Jo-Anne LeFevre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3318722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Parental Involvement in the Development of Children's Reading Skill: A Five-Year Longitudinal Study. Child Development, 2002, 73, 445-460.	1.7	1,375
2	Differential Effects of Home Literacy Experiences on the Development of Oral and Written Language. Reading Research Quarterly, 1998, 33, 96-116.	1.8	602
3	Pathways to Mathematics: Longitudinal Predictors of Performance. Child Development, 2010, 81, 1753-1767.	1.7	554
4	Home numeracy experiences and children's math performance in the early school years Canadian Journal of Behavioural Science, 2009, 41, 55-66.	0.5	458
5	Formal and informal home learning activities in relation to children's early numeracy and literacy skills: The development of a home numeracy model. Journal of Experimental Child Psychology, 2014, 121, 63-84.	0.7	368
6	The role of working memory in mental arithmetic. European Journal of Cognitive Psychology, 2004, 16, 353-386.	1.3	355
7	Knowledge of storybooks as a predictor of young children's vocabulary Journal of Educational Psychology, 1996, 88, 520-536.	2.1	320
8	Cognitive load in hypertext reading: A review. Computers in Human Behavior, 2007, 23, 1616-1641.	5.1	315
9	Selection of procedures in mental addition: Reassessing the problem size effect in adults Journal of Experimental Psychology: Learning Memory and Cognition, 1996, 22, 216-230.	0.7	305
10	Multiple routes to solution of single-digit multiplication problems Journal of Experimental Psychology: General, 1996, 125, 284-306.	1.5	248
11	Continuity and Change in the Home Literacy Environment as Predictors of Growth in Vocabulary and Reading. Child Development, 2014, 85, 1552-1568.	1.7	241
12	Do home numeracy and literacy practices of Greek and Canadian parents predict the numeracy skills of kindergarten children?. International Journal of Early Years Education, 2010, 18, 55-70.	0.4	200
13	Do Written Instructions Need Examples?. Cognition and Instruction, 1986, 3, 1-30.	1.9	195
14	Cognitive arithmetic: Evidence for obligatory activation of arithmetic facts. Memory and Cognition, 1988, 16, 45-53.	0.9	158
15	On Refining Theoretical Models of Emergent Literacy The Role of Empirical Evidence. Journal of School Psychology, 2001, 39, 439-460.	1.5	149
16	The Development of Procedural and Conceptual Knowledge in Computational Estimation. Cognition and Instruction, 1993, 11, 95-132.	1.9	129
17	Word knowledge and working memory as predictors of reading skill Journal of Educational Psychology, 1988, 80, 465-472.	2.1	114
18	Phonological and visual working memory in mental addition. Memory and Cognition, 2003, 31, 738-745.	0.9	113

#	Article	IF	CITATIONS
19	Influences of Language and Parental Involvement on the Development of Counting Skills: Comparisons of French- and English-speaking Canadian Children. Early Child Development and Care, 2002, 172, 283-300.	0.7	109
20	What counts as knowing? The development of conceptual and procedural knowledge of counting from kindergarten through Grade 2. Journal of Experimental Child Psychology, 2006, 93, 285-303.	0.7	108
21	The role of executive attention in the acquisition of mathematical skills for children in Grades 2 through 4. Journal of Experimental Child Psychology, 2013, 114, 243-261.	0.7	103
22	Charting the role of the number line in mathematical development. Frontiers in Psychology, 2013, 4, 641.	1.1	78
23	Mental Rotation With Tangible Threeâ€Dimensional Objects: A New Measure Sensitive to Developmental Differences in 4―to 8‥earâ€Old Children. Mind, Brain, and Education, 2015, 9, 10-18.	0.9	78
24	Expanding the Home Numeracy Model to Chilean children: Relations among parental expectations, attitudes, activities, and children's mathematical outcomes. Early Childhood Research Quarterly, 2020, 50, 16-28.	1.6	76
25	Storybook Reading and Parent Teaching: Links to Language and Literacy Development. New Directions for Child and Adolescent Development, 2001, 2001, 39.	1.3	75
26	The Role of Experience in Numerical Skill: Multiplication Performance in Adults from Canada and China. Mathematical Cognition, 1997, 3, 31-62.	0.4	74
27	More on the relation between division and multiplication in simple arithmetic: Evidence for mediation of division solutions via multiplication. Memory and Cognition, 1999, 27, 803-812.	0.9	71
28	A cognitive analysis of number-series problems: Sources of individual differences in performance. Memory and Cognition, 1986, 14, 287-298.	0.9	64
29	Factors influencing the selection of university majors varying in mathematical content Canadian Journal of Behavioural Science, 1992, 24, 276-289.	0.5	64
30	Individual differences in the obligatory activation of addition facts. Memory and Cognition, 1994, 22, 188-200.	0.9	62
31	Training young children on sequential relations among numbers and spatial decomposition: Differential transfer to number line and mental transformation tasks Developmental Psychology, 2016, 52, 854-866.	1.2	59
32	Doing as they are told and telling it like it is: Self-reports in mental arithmetic. Memory and Cognition, 2003, 31, 516-528.	0.9	57
33	The role of phonological and visual working memory in complex arithmetic for Chinese- and Canadian-educated adults. Memory and Cognition, 2010, 38, 176-185.	0.9	54
34	Children's Home Numeracy Environment Predicts Growth of their Early Mathematical Skills in Kindergarten. Child Development, 2020, 91, 1663-1680.	1.7	53
35	The Role of Child Interests and Collaborative Parent–Child Interactions in Fostering Numeracy and Literacy Development in Canadian Homes. Early Childhood Education Journal, 2014, 42, 251-259. 	1.6	51
36	Next directions in measurement of the home mathematics environment: An international and interdisciplinary perspective. Journal of Numerical Cognition, 2021, 7, 195-220.	0.6	50

#	Article	IF	CITATIONS
37	Cultural differences in complex addition: Efficient Chinese versus adaptive Belgians and Canadians Journal of Experimental Psychology: Learning Memory and Cognition, 2009, 35, 1465-1476.	0.7	49
38	Selection of procedures in mental subtraction Canadian Journal of Experimental Psychology, 2006, 60, 209-220.	0.7	48
39	The extension of the interference effect to multiplication Canadian Journal of Experimental Psychology, 1996, 50, 393-396.	0.7	43
40	Working memory demands of exact and approximate addition. European Journal of Cognitive Psychology, 2007, 19, 187-212.	1.3	43
41	Refining the quantitative pathway of the Pathways to Mathematics model. Journal of Experimental Child Psychology, 2015, 131, 73-93.	0.7	40
42	Chapter 3 Understanding Elementary Mathematics. Advances in Psychology, 1992, , 113-136.	0.1	39
43	Individual differences and developmental change in the associative relations among numbers. Journal of Experimental Child Psychology, 1991, 52, 256-274.	0.7	37
44	Effects of problem format on division and multiplication performance: Division facts are mediated via multiplication-based representations Journal of Experimental Psychology: Learning Memory and Cognition, 2003, 29, 163-170.	0.7	37
45	Decomposing the problem-size effect: A comparison of response time distributions across cultures. Memory and Cognition, 2002, 30, 1160-1167.	0.9	35
46	Knowledge of counting principles: How relevant is order irrelevance?. Journal of Experimental Child Psychology, 2010, 105, 138-145.	0.7	32
47	The inverse relation between multiplication and division: Concepts, procedures, and a cognitive framework. Educational Studies in Mathematics, 2012, 79, 409-428.	1.8	31
48	Multiplication by eye and by ear for Chinese-speaking and English-speaking adults Canadian Journal of Experimental Psychology, 2001, 55, 277-284.	0.7	30
49	The integration of symbolic and non-symbolic representations of exact quantity in preschool children. Cognition, 2017, 166, 382-397.	1.1	28
50	Exploring the influence of basic cognitive skills on the relation between math performance and math anxiety. Journal of Numerical Cognition, 2017, 3, 642-666.	0.6	27
51	The tie effect in simple arithmetic: An access-based account. Memory and Cognition, 2004, 32, 1019-1031.	0.9	24
52	The role of number naming systems and numeracy experiences in children's rote counting: Evidence from Turkish and Canadian children. Learning and Individual Differences, 2014, 32, 238-245.	1.5	22
53	Cultural differences in strategic behavior: A study in computational estimation Journal of Experimental Psychology: Learning Memory and Cognition, 2011, 37, 1294-1301.	0.7	20
54	The Home Numeracy Environment: What Do Cross-Cultural Comparisons Tell Us About How to Scaffold Young Children's Mathematical Skills?. , 2016, , 87-104.		20

#	Article	IF	CITATIONS
55	Home Learning Environments of Children in Mexico in Relation to Socioeconomic Status. Frontiers in Psychology, 2021, 12, 626159.	1.1	20
56	Strategic flexibility in computational estimation for Chinese- and Canadian-educated adults Journal of Experimental Psychology: Learning Memory and Cognition, 2014, 40, 1481-1497.	0.7	19
57	Development of Mathematical Knowledge in Young Children: Attentional Skill and the Use of Inversion. Journal of Cognition and Development, 2014, 15, 161-180.	0.6	18
58	Children's Strategy Choices on Complex Subtraction Problems: Individual Differences and Developmental Changes. Frontiers in Psychology, 2018, 9, 1209.	1.1	18
59	Cognition in Early Relapsing-Remitting Multiple Sclerosis: Consequences May Be Relative to Working Memory. Journal of the International Neuropsychological Society, 2013, 19, 938-949.	1.2	17
60	Implicating the lexicon: Base-word frequency effects in pseudohomophone naming Journal of Experimental Psychology: Human Perception and Performance, 1994, 20, 575-590.	0.7	16
61	Responsive home numeracy as children progress from kindergarten through Grade 1. Early Childhood Research Quarterly, 2020, 53, 484-495.	1.6	16
62	Interpretation of instructions: A source of individual differences in analogical reasoning. Intelligence, 1984, 8, 161-169.	1.6	14
63	Processing instructional texts and examples Canadian Journal of Psychology, 1987, 41, 351-364.	0.8	14
64	Individual differences in the efficiency of word recognition Journal of Educational Psychology, 1992, 84, 95-102.	2.1	13
65	Calculator use need not undermine direct-access ability: The roles of retrieval, calculation, and calculator use in the acquisition of arithmetic facts Journal of Educational Psychology, 2011, 103, 607-616.	2.1	13
66	Individual differences in the development of children's arithmetic fluency from grades 2 to 3 Developmental Psychology, 2021, 57, 1067-1079.	1.2	12
67	Longitudinal relations between young students' feelings about mathematics and arithmetic performance. Cognitive Development, 2021, 59, 101078.	0.7	12
68	The role of mathematical language skills in arithmetic fluency and word-problem solving for first- and second-language learners Journal of Educational Psychology, 2022, 114, 513-539.	2.1	11
69	Ending up with less: the role of working memory in solving simple subtraction problems with positive and negative answers. Research in Mathematics Education, 2013, 15, 165-176.	1.0	9
70	Prospective Memory Failures in Aviation: Effects of Cue Salience, Workload, and Individual Differences. Aerospace Medicine and Human Performance, 2015, 86, 366-373.	0.2	9
71	Numerical cognition: Adding it up Canadian Journal of Experimental Psychology, 2016, 70, 3-11.	0.7	9
72	Learning to Count: Structured Practice With Spatial Cues Supports the Development of Counting Sequence Knowledge in 3-Year-Old English-Speaking Children. Early Education and Development, 2017, 28, 308-322.	1.6	9

#	Article	IF	CITATIONS
73	Fixated in unfamiliar territory: Mapping estimates across typical and atypical number lines. Quarterly Journal of Experimental Psychology, 2020, 73, 279-294.	0.6	9
74	The Role of the Home Environment in Children's Early Numeracy Development: A Canadian Perspective. Early Mathematics Learning and Development, 2015, , 103-117.	0.3	9
75	Home mathematics environment and math performance of Chilean students in kindergarten and Grades 1 to 3. Early Childhood Research Quarterly, 2022, 59, 84-95.	1.6	9
76	Cross-Cultural Comparisons of Home Numeracy and Literacy Environments: Canada, Mexico, and Chile. Education Sciences, 2022, 12, 62.	1.4	9
77	Base word Frequency and Pseudohomophone Naming. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 1996, 49, 1044-1061.	2.3	8
78	Negative Numbers in Simple Arithmetic. Quarterly Journal of Experimental Psychology, 2010, 63, 1943-1952.	0.6	8
79	Children's Knowledge of Symbolic Number in Grades 1 and 2: Integration of Associations. Child Development, 2021, 92, 1099-1117.	1.7	8
80	Research on the development of academic skills: Introduction to the special issue on early literacy and early numeracy Canadian Journal of Experimental Psychology, 2000, 54, 57-60.	0.7	7
81	Selection of procedures in mental subtraction: Use of eye movements as a window on arithmetic processing Canadian Journal of Experimental Psychology, 2018, 72, 171-182.	0.7	7
82	Linguistic and Experiential Factors as Predictors of Young Children's Early Numeracy Skills. , 2018, , 49-72.		6
83	Confidence is key: Unlocking the relations between ADHD symptoms and math performance. Learning and Individual Differences, 2020, 77, 101808.	1.5	6
84	The subject matters: relations among types of anxiety, ADHD symptoms, math performance, and literacy performance. Cognition and Emotion, 2021, 35, 1-16.	1.2	6
85	The hierarchical symbol integration model of individual differences in mathematical skill. Journal of Numerical Cognition, 2019, 5, 262-282.	0.6	6
86	Interactions among Encoding, Calculation, and Production Processes in the Multiplication Performance of Chinese-speaking Adults. Mathematical Cognition, 1998, 4, 47-65.	0.4	5
87	Number line development of Chilean children from preschool to the end of kindergarten. Journal of Experimental Child Psychology, 2021, 208, 105144.	0.7	5
88	CROSS-CULTURAL COMPARISONS OF YOUNG CHILDREN'S EARLY NUMERACY PERFORMANCE: EFFECTS OF A EXPLICIT MIDPOINT ON NUMBER LINE PERFORMANCE FOR CANADIAN AND CHINESE-CANADIAN CHILDREN. Bordon, 2018, 70, 131-146.	AN 0.2	5
89	The relationship between problem size and fixation patterns during addition, subtraction, multiplication, and division. Journal of Numerical Cognition, 2016, 2, 91-115.	0.6	5
90	Walking another pathway: The inclusion of patterning in the pathways to mathematics model. Journal of Experimental Child Psychology, 2022, 222, 105478.	0.7	5

#	Article	IF	CITATIONS
91	Knowledge of mathematical symbols goes beyond numbers. Journal of Numerical Cognition, 2020, 6, 322-354.	0.6	4
92	Linking quantities and symbols in early numeracy learning. Journal of Numerical Cognition, 2022, 8, 1-23.	0.6	4
93	Fraction mapping and fraction comparison skills among grade 4 Chinese students: An error analysis. British Journal of Educational Psychology, 2022, 92, 1335-1353.	1.6	3
94	Optimizing the Home Numeracy Environments of 3- to 6-Year-Old Children in the USA and Canada. , 2016, , 127-146.		2
95	Individual Differences in Basic Arithmetical Processes in Children and Adults. , 2014, , .		2
96	When does the story matter? No evidence for the foregrounding hypothesis in math story problems. Journal of Numerical Cognition, 2021, 7, 259-274.	0.6	2
97	Divide and conquer: Relations among arithmetic operations and emerging knowledge of fraction notation for Chinese students in Grade 4. Journal of Experimental Child Psychology, 2022, 217, 105371.	0.7	2
98	Expediting arithmetic automaticity: Do inefficient computation methods induce spontaneous testing effects?. Journal of Cognitive Psychology, 2019, 31, 104-115.	0.4	1
99	Fixated in more familiar territory: Providing an explicit midpoint for typical and atypical number lines. Quarterly Journal of Experimental Psychology, 2021, 74, 523-535.	0.6	1
100	Pathways to learning mathematics for students in French-immersion and English-instruction programs Journal of Educational Psychology, 2022, 114, 1321-1342.	2.1	1
101	Paths to postsecondary education enrollment among adolescents with and without childhood attentionâ€deficit/hyperactivity disorder (ADHD): A longitudinal analysis of symptom and academic trajectories. Child Development, 2022, 93, .	1.7	1
102	Reading skill as a source of individual differences in the processing of instructional texts Journal of Educational Psychology, 1988, 80, 312-314.	2.1	0
103	Current Views of Mental Representation in Models of Numerical Cognition. PsycCritiques, 1995, 40, 26-27.	0.0	0