
Edgard Gnansounou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3318520/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cyanobacteria and microalgae: A positive prospect for biofuels. Bioresource Technology, 2011, 102, 10163-10172.	4.8	455
2	Techno-economic analysis of lignocellulosic ethanol: A review. Bioresource Technology, 2010, 101, 4980-4991.	4.8	371
3	Methods and tools to evaluate the availability of renewable energy sources. Renewable and Sustainable Energy Reviews, 2011, 15, 1182-1200.	8.2	329
4	Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. Chemosphere, 2017, 188, 280-291.	4.2	212
5	Assessing the energy vulnerability: Case of industrialised countries. Energy Policy, 2008, 36, 3734-3744.	4.2	182
6	GIS-based approach for defining bioenergy facilities location: A case study in Northern Spain based on marginal delivery costs and resources competition between facilities. Biomass and Bioenergy, 2008, 32, 289-300.	2.9	179
7	Bioconversion of sugarcane crop residue for value added products – An overview. Renewable Energy, 2016, 98, 203-215.	4.3	176
8	Life cycle assessment of algae biodiesel and its co-products. Applied Energy, 2016, 161, 300-308.	5.1	166
9	Production and use of lignocellulosic bioethanol in Europe: Current situation and perspectives. Bioresource Technology, 2010, 101, 4842-4850.	4.8	162
10	Critical overview of biomass feedstocks as sustainable substrates for the production of polyhydroxybutyrate (PHB). Bioresource Technology, 2020, 311, 123536.	4.8	148
11	Life cycle assessment of soybean-based biodiesel in Argentina for export. International Journal of Life Cycle Assessment, 2009, 14, 144-159.	2.2	145
12	Water hyacinth a potential source for value addition: An overview. Bioresource Technology, 2017, 230, 152-162.	4.8	141
13	Sequestration and utilization of carbon dioxide by chemical and biological methods for biofuels and biomaterials by chemoautotrophs: Opportunities and challenges. Bioresource Technology, 2018, 256, 478-490.	4.8	126
14	Enzymes for second generation biofuels: Recent developments and future perspectives. Bioresource Technology Reports, 2019, 5, 317-325.	1.5	122
15	Green processing and biotechnological potential of grape pomace: Current trends and opportunities for sustainable biorefinery. Bioresource Technology, 2020, 314, 123771.	4.8	114
16	Microbial dynamics in petroleum oilfields and their relationship with physiological properties of petroleum oil reservoirs. Bioresource Technology, 2017, 245, 1258-1265.	4.8	100
17	Comparative techno-economic assessment and LCA of selected integrated sugarcane-based biorefineries. Bioresource Technology, 2015, 196, 364-375.	4.8	90
18	Protein extraction from biomass in a bioethanol refinery – Possible dietary applications: Use as animal feed and potential extension to human consumption. Bioresource Technology, 2011, 102, 427-436.	4.8	88

Edgard Gnansounou

#	Article	IF	CITATIONS
19	Development of a novel sequential pretreatment strategy for the production of bioethanol from sugarcane trash. Bioresource Technology, 2016, 199, 202-210.	4.8	88
20	Current trends and possibilities for exploitation of Grape pomace as a potential source for value addition. Environmental Pollution, 2021, 278, 116796.	3.7	85
21	Assessing the sustainability of biofuels: A logic-based model. Energy, 2011, 36, 2089-2096.	4.5	73
22	Bioconversion of pentose sugars to value added chemicals and fuels: Recent trends, challenges and possibilities. Bioresource Technology, 2018, 269, 443-451.	4.8	70
23	Biochar and environmental sustainability: Emerging trends and techno-economic perspectives. Bioresource Technology, 2021, 332, 125102.	4.8	66
24	Comparative life cycle assessment of biodiesel from algae and jatropha: A case study of India. Bioresource Technology, 2013, 150, 429-437.	4.8	64
25	Efficient detoxification of corn cob hydrolysate with ion-exchange resins for enhanced xylitol production by Candida tropicalis MTCC 6192. Bioresource Technology, 2018, 251, 416-419.	4.8	62
26	Trends in mitigation of industrial waste: Global health hazards, environmental implications and waste derived economy for environmental sustainability. Science of the Total Environment, 2022, 811, 152357.	3.9	60
27	Strategies for regional integration of electricity supply in West Africa. Energy Policy, 2007, 35, 4142-4153.	4.2	59
28	Bioethanol production from palm wood using Trichoderma reesei and Kluveromyces marxianus. Bioresource Technology, 2019, 271, 345-352.	4.8	58
29	Advancements in heavy metals removal from effluents employing nano-adsorbents: Way towards cleaner production. Environmental Research, 2022, 203, 111815.	3.7	58
30	Furfural production from empty fruit bunch – A biorefinery approach. Industrial Crops and Products, 2015, 69, 371-377.	2.5	52
31	Techno-economic and life-cycle assessments of biorefineries based on palm empty fruit bunches in Brazil. Journal of Cleaner Production, 2018, 172, 3655-3668.	4.6	49
32	Development of a novel ultrasound-assisted alkali pretreatment strategy for the production of bioethanol and xylanases from chili post harvest residue. Bioresource Technology, 2017, 242, 146-151.	4.8	45
33	A review on moringa tree and vetiver grass – Potential biorefinery feedstocks. Bioresource Technology, 2018, 249, 1044-1051.	4.8	41
34	Opportunity for inter-regional integration of electricity markets: the case of Shandong and Shanghai in East China. Energy Policy, 2004, 32, 1737-1751.	4.2	40
35	LCA of bioethanol and furfural production from vetiver. Bioresource Technology, 2015, 185, 202-210.	4.8	40
36	Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: Key modelling choices. Renewable and Sustainable Energy Reviews, 2015, 42, 344-360.	8.2	38

Edgard Gnansounou

#	Article	IF	CITATIONS
37	Conversion of vine shoots into bioethanol and chemicals: Prospective LCA of biorefinery concept. Bioresource Technology, 2020, 303, 122946.	4.8	33
38	Modelling and process optimization for biodiesel production from Nannochloropsis salina using artificial neural network. Bioresource Technology, 2021, 329, 124872.	4.8	33
39	The strategic technology options for mitigating CO2 emissions in power sector: assessment of Shanghai electricity-generating system. Ecological Economics, 2004, 50, 117-133.	2.9	29
40	Recent advances in microbial production of malic acid from renewable byproducts. Reviews in Environmental Science and Biotechnology, 2019, 18, 579-595.	3.9	29
41	Real options valuation of fusion energy R&D programme. Energy Policy, 2011, 39, 116-130.	4.2	26
42	Comparative assessment of selected sugarcane biorefinery-centered systems in Brazil: A multi-criteria method based on sustainability indicators. Bioresource Technology, 2017, 243, 600-610.	4.8	24
43	Ethanol and lignin production from Brazilian empty fruit bunch biomass. Bioresource Technology, 2014, 172, 241-248.	4.8	23
44	Life cycle environmental impacts of a prospective palm-based biorefinery in ParÃ; State-Brazil. Bioresource Technology, 2013, 150, 438-446.	4.8	20
45	Transition of a South African sugar mill towards a biorefinery. A feasibility assessment. Applied Energy, 2018, 229, 1-17.	5.1	18
46	Biochemical conversion of biodiesel by-product into malic acid: A way towards sustainability. Science of the Total Environment, 2020, 709, 136206.	3.9	18
47	Estimating spillover benefits of large R&D projects: Application of real options modelling approach to the case of thermonuclear fusion R&D programme. Energy Policy, 2012, 41, 269-279.	4.2	15
48	Technoeconomic Analysis of Lignocellulosic Ethanol. , 2011, , 123-148.		13
49	An effective surfactant-assisted hydrothermal pretreatment strategy for bioethanol production from chili post-harvest residue by separate hydrolysis and fermentation. Bioprocess and Biosystems Engineering, 2018, 41, 565-571.	1.7	12
50	Using agricultural residues for sustainable transportation biofuels in 2050: Case of West Africa. Bioresource Technology, 2020, 305, 123080.	4.8	12
51	Coproducts performances in biorefineries: Development of Claiming-based allocation models for environmental policy. Bioresource Technology, 2018, 254, 31-39.	4.8	11
52	Synthesis of bioactive material by sol–gel process utilizing polymorphic calcium carbonate precipitate and their direct and indirect in-vitro cytotoxicity analysis. Environmental Technology and Innovation, 2020, 18, 100647.	3.0	11
53	Vulnerability of the economy to the potential disturbances of energy supply: A logic-based model with application to the case of China. Energy Policy, 2010, 38, 2846-2857.	4.2	10
54	Promising eco-friendly biomaterials for future biomedicine: Cleaner production and applications of Nanocellulose. Environmental Technology and Innovation, 2021, 24, 101855.	3.0	10

#	Article	IF	CITATIONS
55	A novel crude glycerol assisted surfactant pretreatment strategy of chili post-harvest residue for bioethanol production. Biofuels, 2015, 6, 383-390.	1.4	8
56	Environmental performances of coproducts. Application of Claiming-Based Allocation models to straw and vetiver biorefineries in an Indian context. Bioresource Technology, 2018, 262, 203-211.	4.8	6
57	Life-Cycle Assessment of Biofuels. , 2011, , 25-50.		5
58	Multi-Regional Long-Term Electricity Supply Scenarios with Fusion. Fusion Science and Technology, 2007, 52, 388-393.	0.6	4
59	Agroresidue-based biorefineries. , 2020, , 243-258.		4
60	Economic Assessment of Biofuels. , 2019, , 95-121.		3
61	Wide Scope Environmental Assessment of Biofuels. , 2019, , 163-196.		3
62	Integrated Sustainability Assessment of Biofuels. , 2019, , 197-214.		3
63	Systems Analysis and Life-Cycle Assessment for energy and environmental sustainability. Bioresource Technology, 2020, 317, 123988.	4.8	3
64	Process design, techno-economic, and life-cycle assessments of selected sugarcane-based biorefineries: a case study in the South African context. , 2020, , 567-597.		2
65	Semantic sustainability characterization of biorefineries: A logic-based model. , 2022, , 311-342.		1
66	Preface. Bioresource Technology, 2013, 150, 405-406.	4.8	0
67	Bioethanol Production from Sugarcane Green Harvest Residues Using Auxin-Assisted Pretreatment. Energy, Environment, and Sustainability, 2018, , 423-439.	0.6	0
68	General logic-based method for assessing the greenness of products and systems. , 2022, , 127-146.		0
69	Pretreatment of Douglas Fir Wood Biomass for Improving Saccharification Efficiencies. Journal of ASTM International, 2010, 7, 1-8.	0.2	Ο