Johannes Stadlmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/331850/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative Proteome Signatures of Trace Samples by Multiplexed Data-Independent Acquisition. Molecular and Cellular Proteomics, 2022, 21, 100177.	3.8	20
2	Clinical grade <scp>ACE2</scp> as a universal agent to block <scp>SARS oV</scp> â€2 variants. EMBO Molecular Medicine, 2022, 14, .	6.9	35
3	A crucial role for Jagunal homolog 1 in humoral immunity and antibody glycosylation in mice and humans. Journal of Experimental Medicine, 2021, 218, .	8.5	11
4	Generation of enzymatically competent SARS oVâ€2 decoy receptor ACE2â€Fc in glycoengineered <i>Nicotiana benthamiana</i> . Biotechnology Journal, 2021, 16, e2000566.	3.5	26
5	Identification of lectin receptors for conserved SARS oVâ€2 glycosylation sites. EMBO Journal, 2021, 40, e108375.	7.8	44
6	Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis. Nature Methods, 2021, 18, 1304-1316.	19.0	74
7	Structure-guided glyco-engineering of ACE2 for improved potency as soluble SARS-CoV-2 decoy receptor. ELife, 2021, 10, .	6.0	29
8	A synthetic peptide library for benchmarking crosslinking-mass spectrometry search engines for proteins and protein complexes. Nature Communications, 2020, 11, 742.	12.8	62
9	Improved Sensitivity in Low-Input Proteomics Using Micropillar Array-Based Chromatography. Analytical Chemistry, 2019, 91, 14203-14207.	6.5	57
10	Analysis of PNGase Fâ€Resistant Nâ€Glycopeptides Using SugarQb for Proteome Discoverer 2.1 Reveals Cryptic Substrate Specificities. Proteomics, 2018, 18, e1700436.	2.2	21
11	Comparative glycoproteomics of stem cells identifies new players in ricin toxicity. Nature, 2017, 549, 538-542.	27.8	110
12	A vital sugar code for ricin toxicity. Cell Research, 2017, 27, 1351-1364.	12.0	20
13	Isolation and Characterization of a Thionin Proprotein-processing Enzyme from Barley. Journal of Biological Chemistry, 2015, 290, 18056-18067.	3.4	22
14	Jagunal homolog 1 is a critical regulator of neutrophil function in fungal host defense. Nature Genetics, 2014, 46, 1028-1033.	21.4	49
15	Regulation of Gene Expression through a Transcriptional Repressor that Senses Acyl-Chain Length in Membrane Phospholipids. Developmental Cell, 2014, 29, 729-739.	7.0	78
16	MS Amanda, a Universal Identification Algorithm Optimized for High Accuracy Tandem Mass Spectra. Journal of Proteome Research, 2014, 13, 3679-3684.	3.7	416
17	Plant species and organ influence the structure and subcellular localization of recombinant glycoproteins. Plant Molecular Biology, 2013, 83, 105-117.	3.9	37
18	A gene responsible for prolyl-hydroxylation of moss-produced recombinant human erythropoietin. Scientific Reports, 2013, 3, 3019.	3.3	50

JOHANNES STADLMANN

#	Article	IF	CITATIONS
19	Glycan profiles of the 27 N-glycosylation sites of the HIV envelope protein CN54gp140. Biological Chemistry, 2012, 393, 719-730.	2.5	61
20	Stabilisation of the Fc Fragment of Human IgG1 by Engineered Intradomain Disulfide Bonds. PLoS ONE, 2012, 7, e30083.	2.5	51
21	Intracellular interactome of secreted antibody Fab fragment in Pichia pastoris reveals its routes of secretion and degradation. Applied Microbiology and Biotechnology, 2012, 93, 2503-2512.	3.6	33
22	Immunoglobulin G Fc N-glycan profiling in patients with gastric cancer by LC-ESI-MS: relation to tumor progression and survival. Glycoconjugate Journal, 2012, 29, 57-66.	2.7	94
23	The two endo-β-N-acetylglucosaminidase genes from Arabidopsis thaliana encode cytoplasmic enzymes controlling free N-glycan levels. Plant Molecular Biology, 2011, 77, 275-284.	3.9	22
24	Analytical and Functional Aspects of Antibody Sialylation. Journal of Clinical Immunology, 2010, 30, 15-19.	3.8	59
25	The response to unfolded protein is involved in osmotolerance of Pichia pastoris. BMC Genomics, 2010, 11, 207.	2.8	74
26	A multi-level study of recombinant Pichia pastoris in different oxygen conditions. BMC Systems Biology, 2010, 4, 141.	3.0	136
27	Optimal nitrogen supply as a key to increased and sustained production of a monoclonal fullâ€size antibody in BYâ€⊋ suspension culture. Biotechnology and Bioengineering, 2010, 107, 278-289.	3.3	74
28	The Changing Fate of a Secretory Glycoprotein in Developing Maize Endosperm Â. Plant Physiology, 2010, 153, 693-702.	4.8	40
29	In Planta Protein Sialylation through Overexpression of the Respective Mammalian Pathway. Journal of Biological Chemistry, 2010, 285, 15923-15930.	3.4	193
30	Topological transformation of liposomes by a membrane-affecting domain of recombinant human erythropoietin. Journal of Liposome Research, 2010, 20, 24-30.	3.3	1
31	A New Allergen from Ragweed (Ambrosia artemisiifolia) with Homology to Art v 1 from Mugwort. Journal of Biological Chemistry, 2010, 285, 27192-27200.	3.4	77
32	Rapid Transient Production in Plants by Replicating and Non-Replicating Vectors Yields High Quality Functional Anti-HIV Antibody. PLoS ONE, 2010, 5, e13976.	2.5	73
33	Development of rhizosecretion as a production system for recombinant proteins from hydroponic cultivated tobacco. FASEB Journal, 2009, 23, 3581-3589.	0.5	83
34	N-Glycosylation of Plant Recombinant Pharmaceuticals. Methods in Molecular Biology, 2009, 483, 239-264.	0.9	9
35	Different subcellular localization and glycosylation for a functional antibody expressed in Nicotiana tabacum plants and suspension cells. Transgenic Research, 2009, 18, 467-482.	2.4	68
36	A close look at human IgG sialylation and subclass distribution after lectin fractionation. Proteomics, 2009, 9, 4143-4153.	2.2	89

JOHANNES STADLMANN

#	Article	IF	CITATIONS
37	Viral and murine interleukin-10 are correctly processed and retain their biological activity when produced in tobacco. BMC Biotechnology, 2009, 9, 22.	3.3	30
38	<i>Trichomonas vaginalis</i> : metronidazole and other nitroimidazole drugs are reduced by the flavin enzyme thioredoxin reductase and disrupt the cellular redox system. Implications for nitroimidazole toxicity and resistance. Molecular Microbiology, 2009, 72, 518-536.	2.5	125
39	Arginine/Lysine Residues in the Cytoplasmic Tail Promote ER Export of Plant Glycosylation Enzymes. Traffic, 2009, 10, 101-115.	2.7	84
40	Influence of elastinâ€like peptide fusions on the quantity and quality of a tobaccoâ€derived human immunodeficiency virusâ€neutralizing antibody. Plant Biotechnology Journal, 2009, 7, 899-913.	8.3	88
41	The Effect of Temperature on the Proteome of Recombinant <i>Pichia pastoris</i> . Journal of Proteome Research, 2009, 8, 1380-1392.	3.7	170
42	Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microbial Cell Factories, 2009, 8, 29.	4.0	189
43	Improved Virus Neutralization by Plant-produced Anti-HIV Antibodies with a Homogeneous β1,4-Galactosylated N-Glycan Profile. Journal of Biological Chemistry, 2009, 284, 20479-20485.	3.4	156
44	Intracellular catalase/peroxidase from the phytopathogenic rice blast fungus <i>Magnaporthe grisea</i> : expression analysis and biochemical characterization of the recombinant protein. Biochemical Journal, 2009, 418, 443-451.	3.7	24
45	Glycoproteomic characterization of butyrylcholinesterase from human plasma. Proteomics, 2008, 8, 254-263.	2.2	73
46	Analysis of immunoglobulin glycosylation by LCâ€ESIâ€MS of glycopeptides and oligosaccharides. Proteomics, 2008, 8, 2858-2871.	2.2	294
47	Recombinant antibody 2G12 produced in maize endosperm efficiently neutralizes HIVâ€1 and contains predominantly singleâ€GlcNAc <i>N</i> â€glycans. Plant Biotechnology Journal, 2008, 6, 189-201.	8.3	166
48	Biochemical and functional characterization of antiâ€HIV antibody–ELP fusion proteins from transgenic plants. Plant Biotechnology Journal, 2008, 6, 379-391.	8.3	109
49	Generation of glycoâ€engineered <i>Nicotiana benthamiana</i> for the production of monoclonal antibodies with a homogeneous humanâ€like <i>N</i> â€glycan structure. Plant Biotechnology Journal, 2008, 6, 392-402.	8.3	458
50	Cellular repressor of E1A-stimulated genes is a bona fide lysosomal protein which undergoes proteolytic maturation during its biosynthesis. Experimental Cell Research, 2008, 314, 3036-3047.	2.6	31
51	Affinity of IgE and IgG against cross-reactive carbohydrate determinants on plant and insect glycoproteins. Journal of Allergy and Clinical Immunology, 2008, 121, 185-190.e2.	2.9	97
52	Cost-effective production of a vaginal protein microbicide to prevent HIV transmission. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3727-3732.	7.1	154
53	Expression and Characterization of an Iron-Regulated Hemin-Binding Protein, HbpA, from Leptospira interrogans Serovar Lai. Infection and Immunity, 2007, 75, 4582-4591.	2.2	58
54	Aberrant localization and underglycosylation of highly accumulating single-chain Fv-Fc antibodies in transgenic Arabidopsis seeds. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1430-1435.	7.1	116

#	Article	IF	CITATIONS
55	A Unique β1,3-Galactosyltransferase Is Indispensable for the Biosynthesis of <i>N</i> -Glycans Containing Lewis a Structures in <i>Arabidopsis thaliana</i> . Plant Cell, 2007, 19, 2278-2292.	6.6	157
56	Mass + Retention Time = Structure:Â A Strategy for the Analysis ofN-Glycans by Carbon LC-ESI-MS and Its Application to FibrinN-Glycans. Analytical Chemistry, 2007, 79, 5051-5057.	6.5	193
57	Production of a monoclonal antibody in plants with a humanized <i>N</i> â€glycosylation pattern. Plant Biotechnology Journal, 2007, 5, 657-663.	8.3	179
58	In vivo glyco-engineered antibody with improved lytic potential produced by an innovative non-mammalian expression system. Biotechnology Journal, 2007, 2, 700-708.	3.5	88
59	GLYCO-PROTEOMIC ASSESSMENT OF IGG AND ALPHA1-PROTEINASE INHIBITOR (A1PI) FROM A CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD) PATIENT IN PLASMA AND BRONCHOALVEOLAR LAVAGE FLUID. Chest, 2006, 130, 173S.	0.8	1
60	Molecular basis of N-acetylglucosaminyltransferase I deficiency in Arabidopsis thaliana plants lacking complex N-glycans. Biochemical Journal, 2005, 387, 385-391.	3.7	89