
Moon Jae-Hak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3318447/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of a candidate gene responsible for the G locus determining chartreuse bulb color in onion (Allium cepa L.) using bulked segregant RNA-Seq. Theoretical and Applied Genetics, 2022, 135, 1025-1036.	3.6	3
2	New monoterpenes and benzylbutanoic acid from snowbell (Styrax japonica) honey and their quantitative analysis by LC-ESI-Q-TOF-MS/MS. Journal of Asia-Pacific Entomology, 2021, 24, 153-153.	0.9	0
3	Aphid estrogen-related receptor controls glycolytic gene expression and fecundity. Insect Biochemistry and Molecular Biology, 2021, 130, 103529.	2.7	13
4	Screening of anti-nosemosis active compounds based on the structure-activity correlation. Journal of Asia-Pacific Entomology, 2021, 24, 606-613.	0.9	3
5	Three new decenynol glucosides from <i>Artemisia scoparia</i> (Asteraceae). Journal of Asian Natural Products Research, 2020, 22, 795-802.	1.4	4
6	New lignan tyramide, phenolics, megastigmanes, and their glucosides from aerial parts of New Zealand spinach, Tetragonia tetragonoides. Food Science and Biotechnology, 2020, 29, 599-608.	2.6	6
7	Coffee residue as a valorization bio-agent for shelf-life extension of lactic acid bacteria under cryopreservation. Waste Management, 2020, 118, 585-590.	7.4	6
8	3-Pentylcatechol, a Non-Allergenic Urushiol Derivative, Displays Anti-Helicobacter pylori Activity In Vivo. Pharmaceuticals, 2020, 13, 384.	3.8	6
9	New caryophyllene-type sesquiterpene and flavonol tetraglycoside with sixteen known compounds from sword bean (Canavalia gladiata). Food Science and Biotechnology, 2020, 29, 1343-1353.	2.6	5
10	Construction of a linkage map flanking the I locus controlling dominant white bulb color and analysis of differentially expressed genes between dominant white and red bulbs in onion (Allium cepa) Tj ETQq0 () D 2gBT /(Oværlock 10
11	Ionization Neutralizes the Allergy-Inducing Property of 3-Pentadecylcatechol: A Urushiol Derivative. Journal of Medicinal Food, 2020, 23, 793-801.	1.5	2
12	Does 3-pentadecylcatechol, an urushiol derivative, get absorbed in the body? A rat oral administration experiment. Food Science and Biotechnology, 2020, 29, 997-1005.	2.6	2
13	Antioxidant activity of coffee added with sword bean. Korean Journal of Food Preservation, 2020, 27, 385-392.	0.5	0
14	Epigallocatechin Exerts Antiâ€Obesity Effect in Brown Adipose Tissue. Chemistry and Biodiversity, 2019, 16, e1900347.	2.1	9
15	Pear Extract and Malaxinic Acid Reverse Obesity, Adipose Tissue Inflammation, and Hepatosteatosis in Mice. Molecular Nutrition and Food Research, 2019, 63, e1801347.	3.3	9
16	Isolation and antifungal activity of methyl 2,3-dihydroxybenzoate from Paenibacillus elgii HOA73. Microbial Pathogenesis, 2017, 106, 139-145.	2.9	9
17	Isolation and identification of Nâ€butylâ€tetrahydroâ€5â€oxofuranâ€2â€carboxamide produced by <i>Bacillussp. L60 and its antifungal activity. Journal of Basic Microbiology, 2017, 57, 283-288.</i>	> 3.3	4
18	Glu–Phe from onion (<i>Allium Cepa</i> L) attenuates lipogenesis in hepatocytes. Bioscience, Biotechnology and Biochemistry, 2017, 81, 1409-1416.	1.3	10

Μοόν Jae-Hak

#	Article	IF	CITATIONS
19	Isolation and characterization of metabolites from Bacillus licheniformis MH48 with antifungal activity against plant pathogens. Microbial Pathogenesis, 2017, 110, 645-653.	2.9	46
20	Metabolism and antioxidant effect of malaxinic acid and its corresponding aglycone in rat blood plasma. Free Radical Biology and Medicine, 2017, 110, 399-407.	2.9	7
21	Isolation of five proanthocyanidins from pear (Pyrus pyrifolia Nakai) fruit peels. Food Science and Biotechnology, 2017, 26, 1209-1215.	2.6	14
22	Phenolics and eudesmanolide from aged common sage exudate with sugar. Food Science and Biotechnology, 2017, 26, 1491-1500.	2.6	5
23	Identification for the First Time of Cyclo(d-Pro-l-Leu) Produced by Bacillus amyloliquefaciens Y1 as a Nematocide for Control of Meloidogyne incognita. Molecules, 2017, 22, 1839.	3.8	44
24	Protocatechuic Acid from Pear Inhibits Melanogenesis in Melanoma Cells. International Journal of Molecular Sciences, 2017, 18, 1809.	4.1	34
25	3-Decylcatechol induces autophagy-mediated cell death through the IRE1α/JNK/p62 in hepatocellular carcinoma cells. Oncotarget, 2017, 8, 58790-58800.	1.8	20
26	Four New Dicaffeoylquinic Acid Derivatives from Glasswort (Salicornia herbacea L.) and Their Antioxidative Activity. Molecules, 2016, 21, 1097.	3.8	44
27	Change in Flavonoid Composition and Antioxidative Activity during Fermentation of Onion (<i>Allium) Tj ETQq1 1 Science, 2016, 81, C1385-93.</i>	0.784314 3.1	l rgBT /Overi 17
28	Phenolics, acyl galactopyranosyl glycerol, and lignan amides from Tetragonia tetragonioides (Pall.) Kuntze. Food Science and Biotechnology, 2016, 25, 1275-1281.	2.6	15
29	Sesquiterpene lactones and scopoletins from Artemisia scoparia Waldst. & Kit. and their angiotensin I-converting enzyme inhibitory activities. Food Science and Biotechnology, 2016, 25, 1701-1708.	2.6	18
30	Enhancement of antioxidative and antimicrobial activities of immature pear (Pyrus pyrifolia cv.) Tj ETQq0 0 0 rgBT 2016, 25, 1719-1726.	/Overlock 2.6	10 Tf 50 30 8
31	A phenyl lipid alkaloid and flavone C-diglucosides from Spergularia marina. Food Science and Biotechnology, 2016, 25, 63-69.	2.6	16
32	Furan, phenolic, and heptelidic acid derivatives produced by Aspergillus oryzae. Food Science and Biotechnology, 2016, 25, 1259-1264.	2.6	12
33	Isolation and antioxidative activity of amino acid derivatives produced by Leuconostoc mesenteroides. Food Science and Biotechnology, 2016, 25, 329-334.	2.6	4
34	Antihypertensive Effects of Artemisia scoparia Waldst in Spontaneously Hypertensive Rats and Identification of Angiotensin I Converting Enzyme Inhibitors. Molecules, 2015, 20, 19789-19804.	3.8	24
35	Pharmacokinetics, Tissue Distribution, and Anti-Lipogenic/Adipogenic Effects of Allyl-Isothiocyanate Metabolites. PLoS ONE, 2015, 10, e0132151.	2.5	37
36	Characterization of Selected Lactobacillus Strains for Use as Probiotics. Korean Journal for Food Science of Animal Resources, 2015, 35, 551-556.	1.5	43

Moon Jae-Hak

#	Article	IF	CITATIONS
37	Comparison of bioactive compound contents and in vitro and ex vivo antioxidative activities between peel and flesh of pear (Pyrus pyrifolia Nakai). Food Science and Biotechnology, 2015, 24, 207-216.	2.6	17
38	Antimicrobial activity of the synthesized non-allergenic urushiol derivatives. Bioscience, Biotechnology and Biochemistry, 2015, 79, 1915-1918.	1.3	18
39	Onion skin waste as a valorization resource for the by-products quercetin and biosugar. Food Chemistry, 2015, 188, 537-542.	8.2	110
40	New Quinolinone Alkaloids from Chestnut (<i>Castanea crenata</i> Sieb) Honey. Journal of Agricultural and Food Chemistry, 2015, 63, 3587-3592.	5.2	19
41	An ether and three ester derivatives of phenylpropanoid from pear (Pyrus pyrifolia Nakai cv.) Tj ETQq1 1 0.78431 253-259.	.4 rgBT /O 2.6	verlock 10 12
42	Change of phenylpropanoic acid and flavonol contents at different growth stage of glasswort (Salicornia herbacea L.). Food Science and Biotechnology, 2014, 23, 685-691.	2.6	14
43	Two novel glycosyl cinnamic and benzoic acids from korean black raspberry (Rubus coreanus) wine. Food Science and Biotechnology, 2014, 23, 1081-1085.	2.6	5
44	Nonallergenic urushiol derivatives inhibit the oxidation of unilamellar vesicles and of rat plasma induced by various radical generators. Free Radical Biology and Medicine, 2014, 71, 379-389.	2.9	19
45	Coumaroyl quinic acid derivatives and flavonoids from immature pear (Pyrus pyrifolia nakai) fruit. Food Science and Biotechnology, 2013, 22, 803-810.	2.6	49
46	Identification of an anticancer compound against HT-29 cells from Phellinus linteus grown on germinated brown rice. Asian Pacific Journal of Tropical Biomedicine, 2013, 3, 785-789.	1.2	27
47	Isolation and identification of antioxidative compounds and their activities from Suaeda japonica. Food Science and Biotechnology, 2013, 22, 1547-1557.	2.6	24
48	Isolation and structural determination of a novel flavonol triglycoside and 7 compounds from the leaves of oriental raisin tree (Hovenia dulcis) and their antioxidative activity. Food Science and Biotechnology, 2013, 22, 115-123.	2.6	9
49	Change in the content of phenolic compounds and antioxidant activity during manufacturing of black raspberry (Rubus coreanus Miq.) wine. Food Science and Biotechnology, 2013, 22, 1-8.	2.6	6
50	Behavior of flavonoid glycosides contained in Korean red pepper paste (Gochujang) during fermentation: Participation of a β-glucosidase inhibitor. Food Science and Biotechnology, 2013, 22, 1-8.	2.6	6
51	Large-scale isolation of highly pure malaxinic acid from immature pear (Pyrus pyrifolia Nakai) fruit. Food Science and Biotechnology, 2013, 22, 1539-1545.	2.6	10
52	Roseomonas riguiloci sp. nov., isolated from wetland freshwater. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 3024-3029.	1.7	33
53	Jaboticabin and flavonoids from the ripened fruit of black rasberry (Rubus coreanum). Food Science and Biotechnology, 2012, 21, 1081-1086.	2.6	16
54	lsolation and identification of cinnamic acid amides as antioxidants from Allium fistulosum L. and their free radical scavenging activity. Food Science and Biotechnology, 2011, 20, 555-560.	2.6	8

Moon Jae-Hak

#	Article	IF	CITATIONS
55	Recovery of arbutin in high purity from fruit peels of pear (Pyrus pyrifolia Nakai). Food Science and Biotechnology, 2011, 20, 801-807.	2.6	32
56	Isolation and identification of phenolic compounds from an Asian pear (Pyrus pyrifolia Nakai) fruit peel. Food Science and Biotechnology, 2011, 20, 1539-1545.	2.6	39
57	Isolation and identification of antioxidative phenolic acids and flavonoid glycosides from Camellia japonica flowers. Horticulture Environment and Biotechnology, 2011, 52, 270-277.	2.1	33
58	Large scale isolation and purification of salvianolic acid b in high purity from roots of dansham (Salvia miltiorrhiza bunge). Food Science and Biotechnology, 2010, 19, 497-502.	2.6	16
59	Detection of lymphocystis disease virus (LCDV) in olive flounder (Paralichthys olivaceus) using efficient extraction and concentration methods. Food Science and Biotechnology, 2010, 19, 1693-1696.	2.6	1