William A Hoffmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3318262/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Not all trees can make a forest: Tree species composition and competition control forest encroachment in a tropical savanna. Journal of Ecology, 2022, 110, 301-312.	1.9	6
2	The diversity of postâ€fire regeneration strategies in the cerrado ground layer. Journal of Ecology, 2021, 109, 154-166.	1.9	64
3	Shade alters savanna grass layer structure and function along a gradient of canopy cover. Journal of Vegetation Science, 2021, 32, .	1.1	22
4	Decadal changes in fire frequencies shift tree communities and functional traits. Nature Ecology and Evolution, 2021, 5, 504-512.	3.4	41
5	The effects of tree cover and soil nutrient addition on native herbaceous richness in a neotropical savanna. Biotropica, 2021, 53, 888-895.	0.8	Ο
6	Hydraulic segmentation does not protect stems from acute water loss during fire. Tree Physiology, 2021, 41, 1785-1793.	1.4	6
7	Savannas are not old fields: Functional trajectories of forest expansion in a fireâ€suppressed Brazilian savanna are driven by habitat generalists. Functional Ecology, 2021, 35, 1797-1809.	1.7	14
8	The role of morpho-physiological traits in frost tolerance of neotropical savanna trees. Trees - Structure and Function, 2021, 35, 1687-1696.	0.9	4
9	Facilitation by isolated trees triggers woody encroachment and a biome shift at the savanna–forest transition. Journal of Applied Ecology, 2021, 58, 2650-2660.	1.9	12
10	Characterizing past fire occurrence in longleaf pine ecosystems with the Mid-Infrared Burn Index and a Random Forest classifier. Forest Ecology and Management, 2021, 500, 119635.	1.4	5
11	Better lucky than good: How savanna trees escape the fire trap in a variable world. Ecology, 2020, 101, e02895.	1.5	23
12	Flammability thresholds or flammability gradients? Determinants of fire across savanna–forest transitions. New Phytologist, 2020, 228, 910-921.	3.5	32
13	No Net Loss of Species Diversity After Prescribed Fires in the Brazilian Savanna. Frontiers in Forests and Clobal Change, 2020, 3, .	1.0	42
14	Rare frost events reinforce tropical savanna–forest boundaries. Journal of Ecology, 2019, 107, 468-477.	1.9	37
15	Comment on "The global tree restoration potential― Science, 2019, 366, .	6.0	185
16	Quantifying the short-term flowering after fire in some plant communities of a cerrado grassland. Plant Ecology and Diversity, 2018, 11, 259-266.	1.0	40
17	Sensitivity of woody carbon stocks to bark investment strategy in Neotropical savannas and forests. Biogeosciences, 2018, 15, 233-243.	1.3	7
18	Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change. Ecology Letters, 2017, 20, 307-316.	3.0	90

#	Article	IF	CITATIONS
19	Assessing water-related plant traits to explain slow-wilting in soybean PI 471938. Journal of Crop Improvement, 2017, 31, 400-417.	0.9	10
20	Invasibility of a fire-maintained savanna–wetland gradient by non-native, woody plant species. Forest Ecology and Management, 2017, 405, 229-237.	1.4	10
21	Trait shifts associated with the subshrub life-history strategy in a tropical savanna. Oecologia, 2017, 185, 281-291.	0.9	9
22	The biodiversity cost of carbon sequestration in tropical savanna. Science Advances, 2017, 3, e1701284.	4.7	251
23	Comment on "The extent of forest in dryland biomes― Science, 2017, 358, .	6.0	57
24	Wood decay and the persistence of resprouting species in pyrophilic ecosystems. Trees - Structure and Function, 2017, 31, 237-245.	0.9	6
25	Enhancing Heat Tolerance of the Little Dogwood Cornus canadensis L. f. with Introduction of a Superoxide Reductase Gene from the Hyperthermophilic Archaeon Pyrococcus furiosus. Frontiers in Plant Science, 2016, 7, 26.	1.7	13
26	Shifts in functional traits elevate risk of fireâ€driven tree dieback in tropical savanna and forest biomes. Global Change Biology, 2016, 22, 1235-1243.	4.2	22
27	Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming. Plant, Cell and Environment, 2016, 39, 2221-2234.	2.8	71
28	Where fire stops: vegetation structure and microclimate influence fire spread along an ecotonal gradient. Plant Ecology, 2016, 217, 631-644.	0.7	39
29	Relative Bark Thickness is Correlated with Tree Species Distributions along a Fire Frequency Gradient. Fire Ecology, 2015, 11, 74-87.	1.1	57
30	Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming. Global Change Biology, 2015, 21, 3138-3151.	4.2	66
31	Bacteria species and solution pH effect postharvest quality of cut Zinnia elegans. Scientia Horticulturae, 2015, 194, 71-78.	1.7	18
32	Carbon accumulation and nitrogen pool recovery during transitions from savanna to forest in central Brazil. Ecology, 2014, 95, 342-352.	1.5	61
33	Evidence of population bottleneck in Astragalus michauxii (Fabaceae), a narrow endemic of the southeastern United States. Conservation Genetics, 2014, 15, 153-164.	0.8	14
34	Tropical grassy biomes: misunderstood, neglected, and under threat. Trends in Ecology and Evolution, 2014, 29, 205-213.	4.2	423
35	Savanna Vegetation-Fire-Climate Relationships Differ Among Continents. Science, 2014, 343, 548-552.	6.0	500
36	Size-dependent enhancement of water relations during post-fire resprouting. Tree Physiology, 2014, 34, 404-414.	1.4	7

#	Article	IF	CITATIONS
37	Are winter-active species vulnerable to climate warming? A case study with the wintergreen terrestrial orchid, Tipularia discolor. Oecologia, 2014, 176, 1161-1172.	0.9	9
38	Can savannas become forests? A coupled analysis of nutrient stocks and fire thresholds in central Brazil. Plant and Soil, 2013, 373, 829-842.	1.8	132
39	Seasonal variation in leaf traits between congeneric savanna and forest trees in Central Brazil: implications for forest expansion into savanna. Trees - Structure and Function, 2013, 27, 1139-1150.	0.9	60
40	Current and Historical Variation in Wiregrass (Aristida stricta) Abundance and Distribution Is Not Detectable from Soil δ13C Measurements in Longleaf Pine (Pinus palustris) Savannas. Castanea, 2013, 78, 28-36.	0.2	5
41	Caught in a fire trap: Recurring fire creates stable size equilibria in woody resprouters. Ecology, 2012, 93, 2052-2060.	1.5	99
42	Demographic effects of fire on two endemic plant species in the longleaf pine-wiregrass ecosystem. Plant Ecology, 2012, 213, 1093-1104.	0.7	13
43	Fuels or microclimate? Understanding the drivers of fire feedbacks at savanna–forest boundaries. Austral Ecology, 2012, 37, 634-643.	0.7	165
44	Ecological thresholds at the savannaâ€forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecology Letters, 2012, 15, 759-768.	3.0	649
45	Lost and Found: Remnants of the Big Savannah and Their Relationship to Wet Savannas in North Carolina. Castanea, 2011, 76, 348-363.	0.2	0
46	When is a â€~forest' a savanna, and why does it matter?. Global Ecology and Biogeography, 2011, 20, 653-660.	2.7	348
47	Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought. Global Change Biology, 2011, 17, 2731-2742.	4.2	236
48	Recent vicariance and the origin of the rare, edaphically specialized Sandhills lily, <i>Lilium pyrophilum</i> (Liliaceae): evidence from phylogenetic and coalescent analyses. Molecular Ecology, 2011, 20, 2901-2915.	2.0	14
49	Deciphering the distribution of the savanna biome. New Phytologist, 2011, 191, 197-209.	3.5	410
50	Distinct roles of savanna and forest tree species in regeneration under fire suppression in a Brazilian savanna. Journal of Vegetation Science, 2011, 22, 312-321.	1.1	80
51	Allocation to leaf area and sapwood area affects water relations of co-occurring savanna and forest trees. Oecologia, 2010, 163, 291-301.	0.9	58
52	Drought-deciduous behavior reduces nutrient losses from temperate deciduous trees under severe drought. Oecologia, 2010, 163, 845-854.	0.9	76
53	Not all forests are expanding over central Brazilian savannas. Plant and Soil, 2010, 333, 431-442.	1.8	24
54	Evidence for range stasis during the latter Pleistocene for the Atlantic Coastal Plain endemic genus, Pyxidanthera Michaux. Molecular Ecology, 2010, 19, 4302-4314.	2.0	13

#	Article	IF	CITATIONS
55	Hydraulic lift in a Neotropical savanna: Experimental manipulation and model simulations. Agricultural and Forest Meteorology, 2010, 150, 629-639.	1.9	31
56	Effects of light and temperature on germination of Pyxidanthera brevifolia Wells (Diapensiaceae) ¹ . Journal of the Torrey Botanical Society, 2010, 137, 348-354.	0.1	4
57	CaracterÃsticas estomáticas de pares congenéricos de cerrado e mata de galeria crescendo numa região transicional no Brasil central. Acta Botanica Brasilica, 2009, 23, 499-508.	0.8	29
58	Are rare species less shade tolerant than common species in fire-prone environments? A test with seven Amorpha (Fabaceae) species. Plant Ecology, 2009, 205, 249-260.	0.7	9
59	Sizeâ€dependent mortality in a Neotropical savanna tree: the role of heightâ€related adjustments in hydraulic architecture and carbon allocation. Plant, Cell and Environment, 2009, 32, 1456-1466.	2.8	96
60	Differences in growth patterns between coâ€occurring forest and savanna trees affect the forest–savanna boundary. Functional Ecology, 2009, 23, 689-698.	1.7	122
61	Evapotranspiration and energy balance of Brazilian savannas with contrasting tree density. Agricultural and Forest Meteorology, 2009, 149, 1365-1376.	1.9	105
62	Tree topkill, not mortality, governs the dynamics of savanna–forest boundaries under frequent fire in central Brazil. Ecology, 2009, 90, 1326-1337.	1.5	374
63	Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems. Oecologia, 2008, 155, 405-415.	0.9	131
64	The invasive grass, <i>Melinis minutiflora</i> , inhibits tree regeneration in a Neotropical savanna. Austral Ecology, 2008, 33, 29-36.	0.7	97
65	Expansion of gallery forests into central Brazilian savannas. Global Change Biology, 2008, 14, 2108-2118.	4.2	125
66	Controls on stand transpiration and soil water utilization along a tree density gradient in a Neotropical savanna. Agricultural and Forest Meteorology, 2008, 148, 839-849.	1.9	96
67	Water economy of Neotropical savanna trees: six paradigms revisited. Tree Physiology, 2008, 28, 395-404.	1.4	129
68	The importance of evolutionary history in studies of plant physiological ecology: examples from cerrados and forests of central Brazil. Brazilian Journal of Plant Physiology, 2008, 20, 247-256.	0.5	15
69	Carbon and Water Tradeoffs in Conversions to Forests and Shrublands. , 2007, , 237-246.		10
70	Positive effect of seed size on seedling survival in fire-prone savannas of Australia, Brazil and West Africa. Journal of Tropical Ecology, 2006, 22, 719-722.	0.5	39
71	Specific leaf area explains differences in leaf traits between congeneric savanna and forest trees. Functional Ecology, 2005, 19, 932-940.	1.7	165
72	Seasonal leaf dynamics across a tree density gradient in a Brazilian savanna. Oecologia, 2005, 145, 306-315.	0.9	76

#	Article	IF	CITATIONS
73	Long range lateral root activity by neo-tropical savanna trees. Plant and Soil, 2005, 270, 169-178.	1.8	26
74	Processes preventing nocturnal equilibration between leaf and soil water potential in tropical savanna woody species. Tree Physiology, 2004, 24, 1119-1127.	1.4	185
75	Impact of the invasive alien grass Melinis minutiflora at the savanna-forest ecotone in the Brazilian Cerrado. Diversity and Distributions, 2004, 10, 99-103.	1.9	102
76	Constraints to seedling success of savanna and forest trees across the savanna-forest boundary. Oecologia, 2004, 140, 252-260.	0.9	175
77	Comparative growth analysis of tropical forest and savanna woody plants using phylogenetically independent contrasts. Journal of Ecology, 2003, 91, 475-484.	1.9	211
78	Comparative fire ecology of tropical savanna and forest trees. Functional Ecology, 2003, 17, 720-726.	1.7	268
79	Regional feedbacks among fire, climate, and tropical deforestation. Journal of Geophysical Research, 2003, 108, .	3.3	68
80	The role of topkill in the differential response of savanna woody species to fire. Forest Ecology and Management, 2003, 180, 273-286.	1.4	239
81	Nitrogen Controls on Climate Model Evapotranspiration. Journal of Climate, 2002, 15, 278-295.	1.2	99
82	Direct and indirect effects of fire on radial growth of cerrado savanna trees. Journal of Tropical Ecology, 2002, 18, 137-142.	0.5	42
83	Positive feedbacks of fire, climate, and vegetation and the conversion of tropical savanna. Geophysical Research Letters, 2002, 29, 9-1-9-4.	1.5	95
84	Avoiding Bias in Calculations of Relative Growth Rate. Annals of Botany, 2002, 90, 37-42.	1.4	462
85	7. Herbaceous Plant Communities. , 2002, , 121-139.		55
86	Post-Establishment Seedling Success in the Brazilian Cerrado: A Comparison of Savanna and Forest Species1. Biotropica, 2000, 32, 62-69.	0.8	99
87	Elevated CO 2 enhances resprouting of a tropical savanna tree. Oecologia, 2000, 123, 312-317.	0.9	78
88	Post-Establishment Seedling Success in the Brazilian Cerrado: A Comparison of Savanna and Forest Species1. Biotropica, 2000, 32, 62.	0.8	10
89	Vegetation–Climate Feedbacks in the Conversion of Tropical Savanna to Grassland. Journal of Climate, 2000, 13, 1593-1602.	1.2	196
90	Ecosystem rooting depth determined with caves and DNA. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 11387-11392.	3.3	241

#	Article	IF	CITATIONS
91	FIRE AND POPULATION DYNAMICS OF WOODY PLANTS IN A NEOTROPICAL SAVANNA: MATRIX MODEL PROJECTIONS. Ecology, 1999, 80, 1354-1369.	1.5	238
92	Postâ€burn reproduction of woody plants in a neotropical savanna: the relative importance of sexual and vegetative reproduction. Journal of Applied Ecology, 1998, 35, 422-433.	1.9	228
93	Savanna Biodiversity and Ecosystem Properties. Ecological Studies, 1996, , 207-215.	0.4	12
94	The Effects of Fire and Cover on Seedling Establishment in a Neotropical Savanna. Journal of Ecology, 1996, 84, 383.	1.9	170