
Michael T Dill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3318069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Treatment stage migration and treatment sequences in patients with hepatocellular carcinoma: drawbacks and opportunities. Journal of Cancer Research and Clinical Oncology, 2021, 147, 2471-2481.	2.5	6
2	HBV-infection rate and long-term outcome after liver-transplantation of anti-HBc-positive liver-grafts to HBV-naÃ ⁻ ve recipients: A retrospective study. Clinics and Research in Hepatology and Gastroenterology, 2021, 45, 101496.	1.5	1
3	YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Molecular Medicine, 2021, 13, e14351.	6.9	204
4	Regenerative Reprogramming of the Intestinal Stem Cell State via Hippo Signaling Suppresses Metastatic Colorectal Cancer. Cell Stem Cell, 2020, 27, 590-604.e9.	11.1	112
5	Single-Cell Analysis of the Liver Epithelium Reveals Dynamic Heterogeneity and an Essential Role for YAP in Homeostasis and Regeneration. Cell Stem Cell, 2019, 25, 23-38.e8.	11.1	176
6	NUAK2 is a critical YAP target in liver cancer. Nature Communications, 2018, 9, 4834.	12.8	88
7	Comprehensive Molecular Characterization of the Hippo Signaling Pathway in Cancer. Cell Reports, 2018, 25, 1304-1317.e5.	6.4	329
8	YAPâ€TEAD signaling promotes basal cell carcinoma development via a câ€JUN/AP1 axis. EMBO Journal, 2018, 37, .	7.8	51
9	The RSPO–LGR4/5–ZNRF3/RNF43 module controls liver zonation and size. Nature Cell Biology, 2016, 18, 467-479.	10.3	253
10	Gene expression analysis of biopsy samples reveals critical limitations of transcriptomeâ€based molecular classifications of hepatocellular carcinoma. Journal of Pathology: Clinical Research, 2016, 2, 80-92.	3.0	65
11	Hepatic Notch1 deletion predisposes to diabetes and steatosis via glucose-6-phosphatase and perilipin-5 upregulation. Laboratory Investigation, 2016, 96, 972-980.	3.7	10
12	An intrahepatic transcriptional signature of enhanced immune activity predicts response to peginterferon in chronic hepatitis B. Liver International, 2015, 35, 1824-1832.	3.9	17
13	YAP promotes proliferation, chemoresistance, and angiogenesis in human cholangiocarcinoma through TEAD transcription factors. Hepatology, 2015, 62, 1497-1510.	7.3	187
14	Generation of a murine hepatic angiosarcoma cell line and reproducible mouse tumor model. Laboratory Investigation, 2015, 95, 351-362.	3.7	11
15	Downregulation of the Endothelial Genes Notch1 and EphrinB2 in Patients with Nodular Regenerative Hyperplasia. Liver International, 2014, 34, 594-603.	3.9	13
16	Cell entry, efficient RNA replication, and production of infectious hepatitis C virus progeny in mouse liver-derived cells. Hepatology, 2014, 59, 78-88.	7.3	40
17	Quantitative proteomics identifies the membrane-associated peroxidase GPx8 as a cellular substrate of the hepatitis C virus NS3-4A protease. Hepatology, 2014, 59, 423-433.	7.3	41
18	Protein phosphatase 2A promotes hepatocellular carcinogenesis in the diethylnitrosamine mouse model through inhibition of p53. Carcinogenesis, 2014, 35, 114-122.	2.8	28

MICHAEL T DILL

#	Article	IF	CITATIONS
19	Simultaneous detection of hepatitis C virus and interferon stimulated gene expression in infected human liver. Hepatology, 2014, 59, 2121-2130.	7.3	162
20	Isolate-dependent use of claudins for cell entry by hepatitis C virus. Hepatology, 2014, 59, 24-34.	7.3	54
21	Pegylated IFN-α regulates hepatic gene expression through transient Jak/STAT activation. Journal of Clinical Investigation, 2014, 124, 1568-1581.	8.2	43
22	Impact of genetic SLC28 transporter and ITPA variants on ribavirin serum level, hemoglobin drop and therapeutic response in patients with HCV infection. Journal of Hepatology, 2013, 58, 669-675.	3.7	41
23	Constitutive Notch2 signaling induces hepatic tumors in mice. Hepatology, 2013, 57, 1607-1619.	7.3	102
24	Intrahepatic <scp>mRNA</scp> levels of SOCS1 and SOCS3 are associated with cirrhosis but do not predict virological response to therapy in chronic hepatitis C. Liver International, 2013, 33, 94-103.	3.9	5
25	Interferon-γ–Stimulated Genes, but Not USP18, Are Expressed in Livers of Patients With Acute Hepatitis C. Gastroenterology, 2012, 143, 777-786.e6.	1.3	57
26	Combined effect of 25â€ <scp>OH</scp> vitamin D plasma levels and genetic <scp><scp>V</scp></scp> <i>i>itamin </i> <scp><scp>D</scp><scp>R</scp></scp> <i>eceptor</i> (<scp><scp>NR 111</scp></scp>) variants on fibrosis progression rate in <scp>HCV</scp> patients. Liver International, 2012, 32, 635-643.	3.9	89
27	Disruption of Notch1 Induces Vascular Remodeling, Intussusceptive Angiogenesis, and Angiosarcomas in Livers of Mice. Gastroenterology, 2012, 142, 967-977.e2.	1.3	108
28	Interferon-Induced Gene Expression Is a Stronger Predictor of Treatment Response Than IL28B Genotype in Patients With Hepatitis C. Gastroenterology, 2011, 140, 1021-1031.e10.	1.3	233