Hui-Lei Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3317566/publications.pdf

Version: 2024-02-01

414414 279798 1,286 60 23 32 citations h-index g-index papers 69 69 69 1303 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	An engineered Pseudomonas putida can simultaneously degrade organophosphates, pyrethroids and carbamates. Science of the Total Environment, 2018, 628-629, 1258-1265.	8.0	66
2	One-pot biocatalytic route from cycloalkanes to α,ï‰â€dicarboxylic acids by designed Escherichia coli consortia. Nature Communications, 2020, 11, 5035.	12.8	60
3	Unusually Broad Substrate Profile of Selfâ€Sufficient Cytochrome P450 Monooxygenase CYP116B4 from <i>Labrenzia aggregata</i> . ChemBioChem, 2014, 15, 2443-2449.	2.6	57
4	Metabolic Engineering of <i>Pseudomonas putida</i> KT2440 for Complete Mineralization of Methyl Parathion and \hat{l}^3 -Hexachlorocyclohexane. ACS Synthetic Biology, 2016, 5, 434-442.	3.8	54
5	Enzymatic Production of <i> < i>â€Menthol by a High Substrate Concentration Tolerable Esterase from Newly Isolated <i>Bacillus subtilis</i> ECU0554. Advanced Synthesis and Catalysis, 2009, 351, 405-414.</i>	4.3	53
6	Engineering of Cyclohexanone Monooxygenase for the Enantioselective Synthesis of (<i>S</i>)-Omeprazole. ACS Sustainable Chemistry and Engineering, 2019, 7, 7218-7226.	6.7	42
7	Efficient Synthesis of (<i>R</i>)â€2â€Chloroâ€1â€(2,4â€dichlorophenyl)ethanol with a Ketoreductase from <i>Scheffersomyces stipitis</i> CBS 6045. Advanced Synthesis and Catalysis, 2017, 359, 426-431.	4.3	37
8	Increased Catalyst Productivity in $\hat{l}\pm$ -Hydroxy Acids Resolution by Esterase Mutation and Substrate Modification. ACS Catalysis, 2014, 4, 1026-1031.	11.2	36
9	Bioamination of alkane with ammonium by an artificially designed multienzyme cascade. Metabolic Engineering, 2018, 47, 184-189.	7.0	35
10	Regioselectivity Engineering of Epoxide Hydrolase: Near-Perfect Enantioconvergence through a Single Site Mutation. ACS Catalysis, 2018, 8, 8314-8317.	11.2	35
11	Combinatorial metabolic engineering of Pseudomonas putida KT2440 for efficient mineralization of 1,2,3-trichloropropane. Scientific Reports, 2017, 7, 7064.	3.3	34
12	Enzymatic Preparation of the Chiral (<i>S</i>)-Sulfoxide Drug Esomeprazole at Pilot-Scale Levels. Organic Process Research and Development, 2020, 24, 1124-1130.	2.7	33
13	Environmentally benign synthesis of natural glycosides using apple seed meal as green and robust biocatalyst. Journal of Biotechnology, 2008, 133, 469-477.	3.8	32
14	Engineering <i>Pseudomonas putida </i> <scp>KT</scp> 2440 for simultaneous degradation of carbofuran and chlorpyrifos. Microbial Biotechnology, 2016, 9, 792-800.	4.2	31
15	Enantiocomplementary decarboxylative hydroxylation combining photocatalysis and whole-cell biocatalysis in a one-pot cascade process. Green Chemistry, 2019, 21, 1907-1911.	9.0	31
16	Combinatorial evolution of phosphotriesterase toward a robust malathion degrader by hierarchical iteration mutagenesis. Biotechnology and Bioengineering, 2016, 113, 2350-2357.	3.3	30
17	Dehydrogenaseâ€Catalyzed Oxidation of Furanics: Exploitation of Hemoglobin Catalytic Promiscuity. ChemSusChem, 2017, 10, 3524-3528.	6.8	30
18	One-Pot Synthesis of Phenylglyoxylic Acid from Racemic Mandelic Acids via Cascade Biocatalysis. Journal of Agricultural and Food Chemistry, 2019, 67, 2946-2953.	5.2	30

#	Article	IF	Citations
19	Enantioselective bioreductive preparation of chiral halohydrins employing two newly identified stereocomplementary reductases. RSC Advances, 2015, 5, 22703-22711.	3.6	28
20	Altering the Substrate Specificity of Reductase <i>Cg</i> KR1 from <i>Candida glabrata</i> by Protein Engineering for Bioreduction of Aromatic αâ€Keto Esters. Advanced Synthesis and Catalysis, 2014, 356, 1943-1948.	4.3	27
21	Engineering Streptomyces coelicolor Carbonyl Reductase for Efficient Atorvastatin Precursor Synthesis. Applied and Environmental Microbiology, 2017, 83, .	3.1	27
22	Discovery of Two Native Baeyer-Villiger Monooxygenases for Asymmetric Synthesis of Bulky Chiral Sulfoxides. Applied and Environmental Microbiology, 2018, 84, .	3.1	25
23	Confining Enzyme Clusters in Bacteriophage P22 Enhances Cofactor Recycling and Stereoselectivity for Chiral Alcohol Synthesis. ACS Catalysis, 2021, 11, 10487-10493.	11.2	25
24	Resolution of racemic sulfoxides with high productivity and enantioselectivity by a Rhodococcus sp. strain as an alternative to biooxidation of prochiral sulfides for efficient production of enantiopure sulfoxides. Bioresource Technology, 2011, 102, 1537-1542.	9.6	23
25	Highly enantioselective oxidation of phenyl methyl sulfide and its derivatives into optically pure (S)-sulfoxides with Rhodococcus sp. CCZU10-1 in an n-octane–water biphasic system. Applied Microbiology and Biotechnology, 2013, 97, 10329-10337.	3.6	22
26	One Pot Asymmetric Synthesis of (<i>R</i>)â€Phenylglycinol from Racemic Styrene Oxide via Cascade Biocatalysis. ChemCatChem, 2019, 11, 3802-3807.	3.7	22
27	Significantly improved thermostability of a reductase CgKR1 from Candida glabrata with a key mutation at Asp 138 for enhancing bioreduction of aromatic \hat{l} ±-keto esters. Journal of Biotechnology, 2015, 203, 54-61.	3.8	20
28	Hydroxynitrile Lyase Isozymes from <i>Prunus communis</i> Synthetic Applications. Advanced Synthesis and Catalysis, 2017, 359, 1185-1193.	4.3	20
29	Structure-Guided Tuning of a Hydroxynitrile Lyase to Accept Rigid Pharmaco Aldehydes. ACS Catalysis, 2020, 10, 5757-5763.	11.2	20
30	Enantiocomplementary C–H Bond Hydroxylation Combining Photo atalysis and Whole ell Biocatalysis in a Oneâ€Pot Cascade Process. European Journal of Organic Chemistry, 2020, 2020, 821-825.	2.4	19
31	An ene reductase from Clavispora lusitaniae for asymmetric reduction of activated alkenes. Enzyme and Microbial Technology, 2014, 56, 40-45.	3.2	18
32	Engineering P450 _{LaMO} stereospecificity and product selectivity for selective C–H oxidation of tetralin-like alkylbenzenes. Catalysis Science and Technology, 2018, 8, 4638-4644.	4.1	17
33	A Baeyer-Villiger monooxygenase from Cupriavidus basilensis catalyzes asymmetric synthesis of (R)-lansoprazole and other pharmaco-sulfoxides. Applied Microbiology and Biotechnology, 2021, 105, 3169-3180.	3.6	17
34	Assembly of a Three-Dimensional Array of Glycoconjugates by Combinatorial Biocatalysis in Nonaqueous Media. ACS Combinatorial Science, 2008, 10, 79-87.	3.3	16
35	Substrate channel evolution of an esterase for the synthesis of cilastatin. Catalysis Science and Technology, 2015, 5, 2622-2629.	4.1	16
36	Facile Access to Chiral Alcohols with Pharmaceutical Relevance Using a Ketoreductase Newly Mined from <i>Pichia guilliermondii</i> . Chinese Journal of Chemistry, 2013, 31, 349-354.	4.9	15

#	Article	IF	Citations
37	Site-directed mutagenesis of coenzyme-independent carotenoid oxygenase CSO2 to enhance the enzymatic synthesis of vanillin. Applied Microbiology and Biotechnology, 2020, 104, 3897-3907.	3.6	15
38	An engineered microorganism can simultaneously detoxify cadmium, chlorpyrifos, and γâ€hexachlorocyclohexane. Journal of Basic Microbiology, 2016, 56, 820-826.	3.3	14
39	Enantioselective Bioamination of Aromatic Alkanes Using Ammonia: A Multienzymatic Cascade Approach. ChemCatChem, 2020, 12, 2077-2082.	3.7	12
40	Efficient biosynthesis of rare natural product scopolamine using E. coli cells expressing a S14P/K97A mutant of hyoscyamine 6î²-hydroxylase AaH6H. Journal of Biotechnology, 2015, 211, 123-129.	3.8	11
41	Identification two key residues at the intersection of domains of a thioether monooxygenase for improving its sulfoxidation performance. Biotechnology and Bioengineering, 2021, 118, 737-744.	3.3	11
42	Synthesis of novel salidroside esters by lipase-mediated acylation with various functional acyl groups. Journal of Bioscience and Bioengineering, 2008, 106, 65-68.	2.2	10
43	Rapid probing of the reactivity of P450 monooxygenases from the CYP116B subfamily using a substrate-based method. New Journal of Chemistry, 2016, 40, 8928-8934.	2.8	10
44	Enhancing the Catalytic Performance of a CYP116B Monooxygenase by Transdomain Combination Mutagenesis. ChemCatChem, 2018, 10, 2962-2968.	3.7	10
45	Enzymatic synthesis of 10-oxostearic acid in high space-time yield via cascade reaction of a new oleate hydratase and an alcohol dehydrogenase. Journal of Biotechnology, 2019, 306, 100008.	3.8	10
46	Engineering of <scp>d</scp> -fructose-6-phosphate aldolase A for improved activity towards cinnamaldehyde. Catalysis Science and Technology, 2017, 7, 382-386.	4.1	9
47	Rational design of a carboxylic esterase RhEst1 based on computational analysis of substrate binding. Journal of Molecular Graphics and Modelling, 2015, 62, 319-324.	2.4	8
48	Double Enzyme-Catalyzed One-Pot Synthesis of Enantiocomplementary Vicinal Fluoro Alcohols. Organic Letters, 2020, 22, 5446-5450.	4.6	8
49	Attenuated substrate inhibition of a haloketone reductase via structure-guided loop engineering. Journal of Biotechnology, 2020, 308, 141-147.	3.8	7
50	Engineering Bacillus subtilis Isoleucine Dioxygenase for Efficient Synthesis of (2 <i>S</i> ,3 <i>R</i> ,4 <i>S</i>)-4-Hydroxyisoleucine. Journal of Agricultural and Food Chemistry, 2020, 68, 14555-14563.	5.2	7
51	Structural investigation of the enantioselectivity and thermostability mechanisms of esterase RhEst1. Journal of Molecular Graphics and Modelling, 2018, 85, 182-189.	2.4	6
52	Reprogramming Epoxide Hydrolase to Improve Enantioconvergence in Hydrolysis of Styrene Oxide Scaffolds. Advanced Synthesis and Catalysis, 2020, 362, 4699-4706.	4.3	6
53	A Highâ€Throughput Screening Method for the Directed Evolution of Hydroxynitrile Lyase towards Cyanohydrin Synthesis. ChemBioChem, 2021, 22, 996-1000.	2.6	6
54	Protein engineering of thioether monooxygenase to improve its thermostability for enzymatic synthesis of chiral sulfoxide. Molecular Catalysis, 2021, 509, 111625.	2.0	5

Hui-Lei Yu

#	Article	IF	CITATION
55	Facile Production of (+)-Aristolochene and (+)-Bicyclogermacrene in <i>Escherichia coli</i> Newly Discovered Sesquiterpene Synthases from <i>Penicillium expansum</i> Journal of Agricultural and Food Chemistry, 2022, 70, 5860-5868.	5.2	4
56	Colorimetric Highâ€Throughput Screening Method for Directed Evolution of Prazole Sulfide Monooxygenase. ChemBioChem, 2022, 23, .	2.6	4
57	Discovery and Utilization of Biocatalysts for Chiral Synthesis: An Overview of Chinese Scientists Research and Development., 2009, 113, 1-31.		3
58	Monoterpene hydroxylation with an artificial self-sufficient P450 utilizing a P450SMO reductase domain for the electron transfer. Journal of Molecular Catalysis B: Enzymatic, 2015, 116, 78-82.	1.8	3
59	Secretory expression of cyclohexanone monooxygenase by methylotrophic yeast for efficient omeprazole sulfide bio-oxidation. Bioresources and Bioprocessing, 2021, 8, .	4.2	2
60	Enhancing the Catalytic Performance of a CYP116B Monooxygenase by Transdomain Combination Mutagenesis. ChemCatChem, 2018, 10, 2927-2927.	3.7	0