
Alois Lugstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/331751/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrating an Ultramicroelectrode in an AFM Cantilever:  Combined Technology for Enhanced Information. Analytical Chemistry, 2001, 73, 2491-2500.	3.2	301
2	Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts. Nanoscale, 2011, 3, 1120.	2.8	210
3	Integrated AFM–SECM in Tapping Mode: Simultaneous Topographical and Electrochemical Imaging of Enzyme Activity. Angewandte Chemie - International Edition, 2003, 42, 3238-3240.	7.2	150
4	Tuning the Electro-optical Properties of Germanium Nanowires by Tensile Strain. Nano Letters, 2012, 12, 6230-6234.	4.5	113
5	Anomalous Piezoresistance Effect in Ultrastrained Silicon Nanowires. Nano Letters, 2010, 10, 3204-3208.	4.5	109
6	Pressure-Induced Orientation Control of the Growth of Epitaxial Silicon Nanowires. Nano Letters, 2008, 8, 2310-2314.	4.5	90
7	Combined scanning electrochemical atomic force microscopy for tapping mode imaging. Applied Physics Letters, 2003, 82, 1592-1594.	1.5	72
8	FIB processing of silicon in the nanoscale regime. Applied Physics A: Materials Science and Processing, 2003, 76, 545-548.	1.1	64
9	Full three-dimensional simulation of focused ion beam micro/nanofabrication. Nanotechnology, 2007, 18, 245303.	1.3	63
10	Atomic Scale Alignment of Copper-Germanide Contacts for Ge Nanowire Metal Oxide Field Effect Transistors. Nano Letters, 2009, 9, 3739-3742.	4.5	63
11	Integrating micro- and nanoelectrodes into atomic force microscopy cantilevers using focused ion beam techniques. Applied Physics Letters, 2002, 81, 349-351.	1.5	58
12	Hydroisomerization and cracking of n-octane and C8 isomers on Ni-containing zeolites. Applied Catalysis A: General, 1999, 176, 119-128.	2.2	57
13	Current density profile extraction of focused ion beams based on atomic force microscopy contour profiling of nanodots. Journal of Applied Physics, 2002, 92, 4037-4042.	1.1	53
14	Numerical Simulation of Scanning Electrochemical Microscopy Experiments with Frame-Shaped Integrated Atomic Force Microscopyâ^'SECM Probes Using the Boundary Element Method. Analytical Chemistry, 2005, 77, 764-771.	3.2	53
15	Fabrication of a ring nanoelectrode in an AFM tip: novel approach towards simultaneous electrochemical and topographical imaging. Surface and Interface Analysis, 2002, 33, 146-150.	0.8	47
16	Simulation of ion beam induced micro/nano fabrication. Journal of Micromechanics and Microengineering, 2007, 17, 1178-1183.	1.5	47
17	Abrupt Schottky Junctions in Al/Ge Nanowire Heterostructures. Nano Letters, 2015, 15, 4783-4787.	4.5	47
18	Simulation of ion beam direct structuring for 3D nanoimprint template fabrication. Microelectronic Engineering, 2006, 83, 936-939.	1.1	45

#	Article	IF	CITATIONS
19	Ultrafast VLS growth of epitaxial β- Ga ₂ O ₃ nanowires. Nanotechnology, 2009, 20, 434017.	1.3	44
20	Dynamics of hydrogen adsorption on promoter-and inhibitor-modified nickel surfaces. Chemical Physics, 1993, 177, 421-431.	0.9	41
21	Microwave-Assisted Ge _{1–<i>x</i>} Sn _{<i>x</i>} Nanowire Synthesis: Precursor Species and Growth Regimes. Chemistry of Materials, 2015, 27, 6125-6130.	3.2	39
22	In operando x-ray imaging of nanoscale devices: Composition, valence, and internal electrical fields. Science Advances, 2017, 3, eaao4044.	4.7	39
23	In Situ Transmission Electron Microscopy Analysis of Aluminum–Germanium Nanowire Solid-State Reaction. Nano Letters, 2019, 19, 2897-2904.	4.5	39
24	Hydroconversion of n-heptane over bifunctional HZSM5 zeolites influence of the metal concentration and distribution on the activity and selectivity. Applied Catalysis A: General, 1998, 166, 29-38.	2.2	37
25	Origin of Anomalous Piezoresistive Effects in VLS Grown Si Nanowires. Nano Letters, 2015, 15, 1780-1785.	4.5	36
26	Electrochemical current-sensing atomic force microscopy in conductive solutions. Nanotechnology, 2013, 24, 115501.	1.3	34
27	Epitaxial Ge _{0.81} Sn _{0.19} Nanowires for Nanoscale Mid-Infrared Emitters. ACS Nano, 2019, 13, 8047-8054.	7.3	34
28	Comparison of impregnation, liquid- and solid-state ion exchange procedures for the incorporation of nickel in HMFI, HMOR and HBEA. Microporous and Mesoporous Materials, 2000, 39, 307-317.	2.2	33
29	Focused ion beam induced surface amorphization and sputter processes. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 927.	1.6	33
30	Orientation specific synthesis of kinked silicon nanowires grown by the vapour–liquid–solid mechanism. Nanotechnology, 2009, 20, 125606.	1.3	32
31	Growth of branched single-crystalline GaAs whiskers on Si nanowire trunks. Nanotechnology, 2007, 18, 355306.	1.3	31
32	Fabrication of cone-shaped boron doped diamond and gold nanoelectrodes for AFM–SECM. Nanotechnology, 2011, 22, 145306.	1.3	31
33	Multimode Silicon Nanowire Transistors. Nano Letters, 2014, 14, 6699-6703.	4.5	31
34	Direct Synthesis of Hyperdoped Germanium Nanowires. ACS Nano, 2018, 12, 1236-1241.	7.3	30
35	Self-aligned coupled cavity GaAs/AlGaAs midinfrared quantum-cascade laser. Applied Physics Letters, 2000, 77, 1077-1079.	1.5	29
36	Room-Temperature Quantum Ballistic Transport in Monolithic Ultrascaled Al–Ge–Al Nanowire Heterostructures. Nano Letters, 2017, 17, 4556-4561.	4.5	29

#	Article	IF	CITATIONS
37	Electrical transport properties of single-crystal Al nanowires. Nanotechnology, 2016, 27, 385704.	1.3	28
38	Gaâ^•Au alloy catalyst for single crystal silicon-nanowire epitaxy. Applied Physics Letters, 2007, 90, 023109.	1.5	27
39	Quantitative scanning capacitance spectroscopy. Applied Physics Letters, 2003, 83, 4253-4255.	1.5	26
40	Some aspects of substrate pretreatment for epitaxial Si nanowire growth. Nanotechnology, 2008, 19, 485606.	1.3	26
41	Co-containing zeolites prepared by solid-state ion exchange. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 4091-4094.	1.7	25
42	Ultrascaled Germanium Nanowires for Highly Sensitive Photodetection at the Quantum Ballistic Limit. Nano Letters, 2018, 18, 5030-5035.	4.5	25
43	Quantum cascade lasers with monolithic air–semiconductor Bragg reflectors. Applied Physics Letters, 2000, 77, 1241-1243.	1.5	24
44	Study of focused ion beam response of GaAs in the nanoscale regime. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 2238.	1.6	24
45	Level set approach for the simulation of focused ion beam processing on the micro/nano scale. Nanotechnology, 2007, 18, 265307.	1.3	24
46	Atomic Force Microscopy-Scanning Electrochemical Microscopy: Influence of Tip Geometry and Insulation Defects on Diffusion Controlled Currents at Conical Electrodes. Analytical Chemistry, 2011, 83, 2971-2977.	3.2	24
47	Nanometer-Scale Ge-Based Adaptable Transistors Providing Programmable Negative Differential Resistance Enabling Multivalued Logic. ACS Nano, 2021, 15, 18135-18141.	7.3	24
48	Anomalous Plastic Deformation and Sputtering of Ion Irradiated Silicon Nanowires. Nano Letters, 2015, 15, 3800-3807.	4.5	23
49	Simulation-based approach for the accurate fabrication of blazed grating structures by FIB. Optics Express, 2007, 15, 9444.	1.7	22
50	Characterization of metallic species on Ni- and Co-containing ZSM-5 catalysts—reduction behavior and catalytic properties. Zeolites, 1997, 18, 391-397.	0.9	21
51	Size and site controlled Ga nanodots on GaAs seeded by focused ion beams. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 888.	1.6	21
52	Scalable Approach for Vertical Device Integration of Epitaxial Nanowires. Nano Letters, 2009, 9, 1830-1834.	4.5	21
53	Dynamical Tuning of Nanowire Lasing Spectra. Nano Letters, 2017, 17, 6637-6643.	4.5	19
54	Measuring the Optical Absorption of Single Nanowires. Physical Review Applied, 2020, 14, .	1.5	19

#	Article	IF	CITATIONS
55	Hydroconversion of n-heptane over CoNi containing HZSM5. Applied Catalysis A: General, 1997, 152, 93-105.	2.2	18
56	Slow trap response of zirconium dioxide thin films on silicon. Applied Physics Letters, 2003, 83, 1400-1402.	1.5	18
57	Low power phase change memory switching of ultra-thin In3Sb1Te2 nanowires. Applied Physics Letters, 2016, 109, .	1.5	18
58	Plasmon-Driven Hot Electron Transfer at Atomically Sharp Metal–Semiconductor Nanojunctions. ACS Photonics, 2020, 7, 1642-1648.	3.2	18
59	Subeutectic Synthesis of Epitaxial Si-NWs with Diverse Catalysts Using a Novel Si Precursor. Nano Letters, 2010, 10, 3957-3961.	4.5	17
60	Tuning the electrical performance of Ge nanowire MOSFETs by focused ion beam implantation. Nanotechnology, 2011, 22, 035201.	1.3	17
61	Nanoscale aluminum plasmonic waveguide with monolithically integrated germanium detector. Applied Physics Letters, 2019, 115, .	1.5	17
62	Atypical Self-Activation of Ga Dopant for Ge Nanowire Devices. Nano Letters, 2011, 11, 3108-3112.	4.5	16
63	Electric field modulation of thermovoltage in single-layer MoS2. Applied Physics Letters, 2014, 105, .	1.5	16
64	Electrical characterization and examination of temperature-induced degradation of metastable Ge _{0.81} Sn _{0.19} nanowires. Nanoscale, 2018, 10, 19443-19449.	2.8	16
65	Silicene Passivation by Few-Layer Graphene. ACS Applied Materials & amp; Interfaces, 2019, 11, 12745-12751.	4.0	16
66	Polarity Control in Ge Nanowires by Electronic Surface Doping. Journal of Physical Chemistry C, 2020, 124, 19858-19863.	1.5	16
67	Ill–V semiconductor nanocrystal formation in silicon nanowires via liquid-phase epitaxy. Nano Research, 2014, 7, 1769-1776.	5.8	15
68	Monolithic Axial and Radial Metal–Semiconductor Nanowire Heterostructures. Nano Letters, 2018, 18, 7692-7697.	4.5	15
69	Highly Transparent Contacts to the 1D Hole Gas in Ultrascaled Ge/Si Core/Shell Nanowires. ACS Nano, 2019, 13, 14145-14151.	7.3	15
70	High performance Ω-gated Ge nanowire MOSFET with quasi-metallic source/drain contacts. Nanotechnology, 2010, 21, 435704.	1.3	14
71	Scanning electrochemical microscopy: Diffusion controlled approach curves for conical AFM-SECM tips. Electrochemistry Communications, 2013, 27, 29-33.	2.3	14
72	Synthesis, Morphological, and Electro-optical Characterizations of Metal/Semiconductor Nanowire Heterostructures. Nano Letters, 2016, 16, 3507-3513.	4.5	14

#	Article	IF	CITATIONS
73	Gateâ€Tunable Negative Differential Resistance in Nextâ€Generation Ge Nanodevices and their Performance Metrics. Advanced Electronic Materials, 2021, 7, 2001178.	2.6	14
74	Method to characterize the three-dimensional distribution of focused ion beam induced damage in silicon after 50 keV Ga+ irradiation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1644-1648.	0.9	13
75	A novel fabrication technique for crystallite growth on a (100) InAs surface utilizing focused ion beams. Nuclear Instruments & Methods in Physics Research B, 2004, 222, 91-95.	0.6	13
76	Synthesis of nanowires in room temperature ambient: A focused ion beam approach. Applied Physics Letters, 2006, 88, 163114.	1.5	13
77	Study of focused ion beam response of GaSb. Nuclear Instruments & Methods in Physics Research B, 2007, 255, 309-313.	0.6	13
78	Focused electron beam induced deposition of gold catalyst templates for Si-nanowire synthesis. Nanotechnology, 2011, 22, 015302.	1.3	13
79	Ultra-fast vapour–liquid–solid synthesis of Si nanowires using ion-beam implanted gallium as catalyst. Nanotechnology, 2011, 22, 395601.	1.3	13
80	<i>In situ</i> monitoring of Joule heating effects in germanium nanowires by μ-Raman spectroscopy. Nanotechnology, 2013, 24, 065701.	1.3	13
81	Strain distribution in single, suspended germanium nanowires studied using nanofocused x-rays. Nanotechnology, 2016, 27, 055705.	1.3	13
82	Solution-based low-temperature synthesis of germanium nanorods and nanowires. Monatshefte Für Chemie, 2018, 149, 1315-1320.	0.9	13
83	Spatially resolved thermoelectric effects in <i>operando</i> semiconductor–metal nanowire heterostructures. Nanoscale, 2020, 12, 20590-20597.	2.8	13
84	Monolithic Metal–Semiconductor–Metal Heterostructures Enabling Next-Generation Germanium Nanodevices. ACS Applied Materials & Interfaces, 2021, 13, 12393-12399.	4.0	13
85	Scanning capacitance microscopy investigations of focused ion beam damage in silicon. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 19, 178-182.	1.3	12
86	Electrostatic actuated strain engineering in monolithically integrated VLS grown silicon nanowires. Nanotechnology, 2014, 25, 455705.	1.3	12
87	Strain engineering of core–shell silicon carbide nanowires for mechanical and piezoresistive characterizations. Nanotechnology, 2019, 30, 265702.	1.3	12
88	In-Situ Transmission Electron Microscopy Imaging of Aluminum Diffusion in Germanium Nanowires for the Fabrication of Sub-10 nm Ge Quantum Disks. ACS Applied Nano Materials, 2020, 3, 1891-1899.	2.4	12
89	Highly Biaxially Strained Silicene on Au(111). Journal of Physical Chemistry C, 2021, 125, 9973-9980.	1.5	12
90	Gate-Tunable Electron Transport Phenomena in Al–Geâÿ"111⟩–Al Nanowire Heterostructures. Nano Letters, 2015, 15, 7514-7518.	4.5	11

#	Article	IF	CITATIONS
91	CMOSâ€Compatible Controlled Hyperdoping of Silicon Nanowires. Advanced Materials Interfaces, 2018, 5, 1800101.	1.9	11
92	The high pressure phase transformation behavior of silicon nanowires. Applied Physics Letters, 2018, 113, .	1.5	11
93	n -Heptane cracking on H- and Ni-containingzeolites. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 1837-1842.	1.7	10
94	Tuning Electroluminescence from a Plasmonic Cavity-Coupled Silicon Light Source. Nano Letters, 2018, 18, 7230-7237.	4.5	10
95	Focussed ion beam induced damage in silicon studied by scanning capacitance microscopy. Semiconductor Science and Technology, 2003, 18, 195-198.	1.0	9
96	Focused ion beam induced nanodot and nanofiber growth. Microelectronic Engineering, 2006, 83, 1491-1494.	1.1	9
97	Focused ion beam generated antimony nanowires for microscale pH sensors. Applied Physics Letters, 2009, 95, 223106.	1.5	9
98	<i>In situ</i> micro-Raman compression: characterization of plasticity and fracture in GaAs. Philosophical Magazine, 2011, 91, 1286-1292.	0.7	9
99	Nanowires enabling strained photovoltaics. Applied Physics Letters, 2014, 104, .	1.5	9
100	Combined Optical and Electronic Readout for Event Reconstruction in a GEM-Based TPC. IEEE Transactions on Nuclear Science, 2018, 65, 913-918.	1.2	9
101	Optical Signatures of Dirac Electrodynamics for hBN-Passivated Silicene on Au(111). Nano Letters, 2021, 21, 5301-5307.	4.5	9
102	Synthesis of Novel Phases in Si Nanowires Using Diamond Anvil Cells at High Pressures and Temperatures. Nano Letters, 2021, 21, 1427-1433.	4.5	9
103	A Topâ€Down Platform Enabling Ge Based Reconfigurable Transistors. Advanced Materials Technologies, 2022, 7, 2100647.	3.0	9
104	Nano-patterning and growth of self-assembled quantum dots. Microelectronics Journal, 2006, 37, 1532-1534.	1.1	8
105	In Situ Transmission Electron Microscopy Analysis of Copper–Germanium Nanowire Solid-State Reaction. Nano Letters, 2019, 19, 8365-8371.	4.5	8
106	Focused ion beam induced synthesis of a porous antimony nanowire network. Journal of Applied Physics, 2007, 102, 044308.	1.1	7
107	Impact of fluence-rate related effects on the sputtering of silicon at elevated target temperatures. Journal of Applied Physics, 2009, 105, 044912.	1.1	7
108	Quasi One-Dimensional Metal–Semiconductor Heterostructures. Nano Letters, 2019, 19, 3892-3897.	4.5	7

#	Article	IF	CITATIONS
109	Iron-rich talc as air-stable platform for magnetic two-dimensional materials. Npj 2D Materials and Applications, 2021, 5, .	3.9	7
110	Formation of n- and p-type regions in individual Si/SiO ₂ core/shell nanowires by ion beam doping. Nanotechnology, 2018, 29, 474001.	1.3	6
111	Drastic Changes in Material Composition and Electrical Properties of Gallium-Seeded Germanium Nanowires. Crystal Growth and Design, 2019, 19, 2531-2536.	1.4	6
112	Verifying the band gap narrowing in tensile strained Ge nanowires by electrical means. Nanotechnology, 2021, 32, 145711.	1.3	6
113	Bias-Switchable Photoconductance in a Nanoscale Ge Photodetector Operated in the Negative Differential Resistance Regime. ACS Photonics, 2021, 8, 3469-3475.	3.2	6
114	Growth of one-dimensional III–V structures on Si nanowires and pre-treated planar Si surfaces. Journal of Crystal Growth, 2009, 311, 1859-1862.	0.7	5
115	Impact of growth temperature on the crystal habits, forms andÂstructures of VO2 nanocrystals. Applied Physics A: Materials Science and Processing, 2011, 102, 201-204.	1.1	5
116	Sputter-redeposition method for the fabrication of automatically sealed micro/nanochannel using FIBs. International Journal of Precision Engineering and Manufacturing, 2011, 12, 893-898.	1.1	5
117	In-doped Sb nanowires grown by MOCVD for high speed phase change memories. Micro and Nano Engineering, 2019, 2, 117-121.	1.4	5
118	Polycrystalline Ge Nanosheets Embedded in Metalâ€&emiconductor Heterostructures Enabling Waferâ€&cale 3D Integration of Ge Nanodevices with Selfâ€Aligned Al Contacts. Advanced Electronic Materials, 2021, 7, 2100101.	2.6	5
119	Al–Ge–Al Nanowire Heterostructure: From Singleâ€Hole Quantum Dot to Josephson Effect. Advanced Materials, 2021, 33, e2101989.	11.1	5
120	Study of the chemical and morphological evolution of the GaAs surface after high fluence focused ion beam exposure. Nuclear Instruments & Methods in Physics Research B, 2004, 217, 402-408.	0.6	4
121	Superconducting MgB2 weak links and superconducting quantum interference devices prepared by AFM nanolithography. Physica C: Superconductivity and Its Applications, 2008, 468, 789-792.	0.6	4
122	RTS and 1/f noise in Ge nanowire transistors. , 2011, , .		4
123	Focused ion beam induced synthesis of antimony nanowires for gas sensor applications. Nanotechnology, 2012, 23, 435502.	1.3	4
124	Synthesis and electrical characterization of intrinsic and in situ doped Si nanowires using a novel precursor. Beilstein Journal of Nanotechnology, 2012, 3, 564-569.	1.5	4
125	A General Approach toward Shape-Controlled Synthesis of Silicon Nanowires. Nano Letters, 2013, 13, 21-25.	4.5	4
126	Reversible Al Propagation in Si _{<i>x</i>} Ge _{1–<i>x</i>} Nanowires: Implications for Electrical Contact Formation. ACS Applied Nano Materials, 2020, 3, 10427-10436.	2.4	4

#	Article	IF	CITATIONS
127	Coulomb blockade in monolithic and monocrystalline Al-Ge-Al nanowire heterostructures. Applied Physics Letters, 2020, 116, .	1.5	4
128	FIB induced growth of antimony nanowires. Microelectronic Engineering, 2007, 84, 1440-1442.	1.1	3
129	Nano-bridges based on the superconducting MgB2 thin films. Physica C: Superconductivity and Its Applications, 2008, 468, 785-788.	0.6	3
130	Nanowire-metal heterostructures for high performance MOSFETs. Elektrotechnik Und Informationstechnik, 2010, 127, 171-175.	0.7	3
131	Anisotropic lithiation behavior of crystalline silicon. Nanotechnology, 2012, 23, 495716.	1.3	3
132	Miniaturized Wide-Range Field-Emission Vacuum Gauge. Nanomaterials and Nanotechnology, 2014, 4, 29.	1.2	3
133	Stimulated Raman Scattering in Ge Nanowires. Journal of Physical Chemistry C, 2020, 124, 13872-13877.	1.5	3
134	Germanium nanowire microbolometer. Nanotechnology, 2022, 33, 245201.	1.3	3
135	Local, direct-write, damage-free thinning of germanium nanowires. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	0.6	2
136	Fabrication and characterization of a germanium nanowire light emitting diode. Applied Physics Letters, 2017, 111, 233103.	1.5	2
137	Electromagnetic enhancement effect on the atomically abrupt heterojunction of Si/InAs heterostructured nanowires. Journal of Applied Physics, 2019, 125, 064303.	1.1	2
138	Ge quantum wire memristor. Nanotechnology, 2020, 31, 445204.	1.3	2
139	Transition metal cations in zeolites — A catalyst for hds reactions. Studies in Surface Science and Catalysis, 1995, 98, 163-164.	1.5	1
140	Ion Beam Induced Chemical Vapor Deposition of Dielectric Materials. Materials Research Society Symposia Proceedings, 2000, 624, 163.	0.1	1
141	Effects of Ga-Irradiation On Properties of Materials Processed by A Focused Ion Beam (FIB). Materials Research Society Symposia Proceedings, 2000, 647, 1.	0.1	1
142	Nonuniform-channel MOS device. Applied Physics A: Materials Science and Processing, 2003, 76, 1035-1039.	1.1	1
143	Room temperature lasing of electrically pumped quantum cascade micro-cylinders. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 626-628.	1.3	1
144	Impact of Al, Ni, and TiN Metal Gates On ZrO2-MOS Capacitors. ECS Transactions, 2006, 1, 507-515.	0.3	1

#	Article	IF	CITATIONS
145	High temperature focused ion beam response of graphite resulting in spontaneous nanosheet formation. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	0.6	1
146	Electroluminescence from NiSi ₂ /Si/NiSi ₂ nanowire heterostructures operated at high electric fields. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2895-2900.	0.8	1
147	Plasmon-Assisted Polarization-Sensitive Photodetection with Tunable Polarity for Integrated Silicon Photonic Communication Systems. Nanotechnology, 2021, 32, .	1.3	1
148	FIB-TEM Characterization of Locally Restricted Implantation Damage. Materials Research Society Symposia Proceedings, 2002, 738, 7141.	0.1	0
149	Metallic nano dots realized by a subtractive self organization process. Superlattices and Microstructures, 2004, 36, 107-111.	1.4	0
150	A Nanowire Growth Technique Utilizing Focused Ion Beams. AIP Conference Proceedings, 2007, , .	0.3	0
151	Growth of GaAs whiskers by MBE on LPCVD Si(111) nanowire trunks. , 2008, , .		0
152	In place growth of vertical Si nanowires for surround gated MOSFETs with self aligned contact formation. , 2010, , .		0
153	Peculiarities of temperature dependent ion beam sputtering and channeling of crystalline bismuth. Nanotechnology, 2014, 25, 305302.	1.3	0
154	Ytterbium silicide nanostructures prepared by pulsed laser ablation in oven: Structural and electrical characterization. Materials Letters, 2019, 246, 17-19.	1.3	0
155	Extended Defects in Semiconductor Nanowires. , 2008, , 149-150.		Ο