Guilherme M Gelfuso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3317282/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 75, 186-193.	2.0	283
2	Enhancing and sustaining the topical ocular delivery of fluconazole using chitosan solution and poloxamer/chitosan in situ forming gel. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 320-327.	2.0	135
3	The Digital Pharmacies Era: How 3D Printing Technology Using Fused Deposition Modeling Can Become a Reality. Pharmaceutics, 2019, 11, 128.	2.0	125
4	Chitosan nanoparticles for targeting and sustaining minoxidil sulphate delivery to hair follicles. International Journal of Biological Macromolecules, 2015, 75, 225-229.	3.6	98
5	Liposomal voriconazole (VOR) formulation for improved ocular delivery. Colloids and Surfaces B: Biointerfaces, 2015, 133, 331-338.	2.5	79
6	Chitosan nanoparticles loading oxaliplatin as a mucoadhesive topical treatment of oral tumors: Iontophoresis further enhances drug delivery ex vivo. International Journal of Biological Macromolecules, 2020, 154, 1265-1275.	3.6	62
7	Chitosan microparticles for sustaining the topical delivery of minoxidil sulphate. Journal of Microencapsulation, 2011, 28, 650-658.	1.2	54
8	Wound Healing Effect of Essential Oil Extracted from Eugenia dysenterica DC (Myrtaceae) Leaves. Molecules, 2019, 24, 2.	1.7	53
9	Targeted clindamycin delivery to pilosebaceous units by chitosan or hyaluronic acid nanoparticles for improved topical treatment of acne vulgaris. Carbohydrate Polymers, 2021, 253, 117295.	5.1	51
10	Taste masking and rheology improvement of drug complexed with beta-cyclodextrin and hydroxypropyl-β-cyclodextrin by hot-melt extrusion. Carbohydrate Polymers, 2018, 185, 19-26.	5.1	50
11	Microparticles prepared with 50–190 kDa chitosan as promising non-toxic carriers for pulmonary delivery of isoniazid. Carbohydrate Polymers, 2017, 174, 421-431.	5.1	49
12	Improving stability of antioxidant compounds from Plinia cauliflora (jabuticaba) fruit peel extract by encapsulation in chitosan microparticles. Journal of Food Engineering, 2018, 238, 195-201.	2.7	48
13	Besifloxacin liposomes with positively charged additives for an improved topical ocular delivery. Scientific Reports, 2020, 10, 19285.	1.6	37
14	The Effects of pH and Ionic Strength on Topical Delivery of a Negatively Charged Porphyrin (TPPS4). Journal of Pharmaceutical Sciences, 2008, 97, 4249-4257.	1.6	36
15	The influence of positive or negative charges in the passive and iontophoretic skin penetration of porphyrins used in photodynamic therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77, 249-256.	2.0	36
16	Iontophoresis-Targeted, Follicular Delivery of Minoxidil Sulfate for the Treatment of Alopecia. Journal of Pharmaceutical Sciences, 2013, 102, 1488-1494.	1.6	36
17	FDM 3D printing of modified drug-delivery systems using hot melt extrusion: a new approach for individualized therapy. Therapeutic Delivery, 2017, 8, 957-966.	1.2	35
18	Solid effervescent formulations as new approach for topical minoxidil delivery. European Journal of Pharmaceutical Sciences, 2017, 96, 411-419.	1.9	34

#	Article	IF	CITATIONS
19	Dutasteride nanocapsules for hair follicle targeting: Effect of chitosan-coating and physical stimulus. International Journal of Biological Macromolecules, 2020, 151, 56-61.	3.6	34
20	The role of formulation and follicular pathway in voriconazole cutaneous delivery from liposomes and nanostructured lipid carriers. Colloids and Surfaces B: Biointerfaces, 2018, 170, 341-346.	2.5	33
21	Hydroxypropyl-β-cyclodextrin-complexed naringenin by solvent change precipitation for improving anti-inflammatory effect in vivo. Carbohydrate Polymers, 2020, 231, 115769.	5.1	33
22	Predictive models of FDM 3D printing using experimental design based on pharmaceutical requirements for tablet production. International Journal of Pharmaceutics, 2020, 588, 119728.	2.6	33
23	Use of mixture design in drug-excipient compatibility determinations: Thymol nanoparticles case study. Journal of Pharmaceutical and Biomedical Analysis, 2017, 137, 196-203.	1.4	32
24	Iontophoretic transport kinetics of ketorolac in vitro and in vivo: Demonstrating local enhanced topical drug delivery to muscle. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 86, 219-226.	2.0	31
25	Thermal analysis used to guide the production of thymol and Lippia origanoides essential oil inclusion complexes with cyclodextrin. Journal of Thermal Analysis and Calorimetry, 2019, 137, 543-553.	2.0	31
26	Lipid nanoparticles as carriers of cyclodextrin inclusion complexes: A promising approach for cutaneous delivery of a volatile essential oil. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110382.	2.5	30
27	Effect of physical stimuli on hair follicle deposition of clobetasol-loaded Lipid Nanocarriers. Scientific Reports, 2020, 10, 176.	1.6	30
28	Polymeric nanocapsules: A review on design and production methods for pharmaceutical purpose. Methods, 2022, 199, 54-66.	1.9	30
29	Excised Porcine Cornea Integrity Evaluation in an in vitro Model of Iontophoretic Ocular Research. Ophthalmic Research, 2010, 43, 208-216.	1.0	29
30	Development and validation of a selective HPLC-UV method for thymol determination in skin permeation experiments. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1022, 81-86.	1.2	29
31	Chemical and physical strategies in onychomycosis topical treatment: A review. Medical Mycology, 2017, 55, myw084.	0.3	28
32	Nanotechnology advances for hair loss. Therapeutic Delivery, 2018, 9, 593-603.	1.2	28
33	Assessment of the percutaneous penetration of cisplatin: The effect of monoolein and the drug skin penetration pathway. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 73, 90-94.	2.0	27
34	Iontophoretic transport of zinc phthalocyanine tetrasulfonic acid as a tool to improve drug topical delivery. Anti-Cancer Drugs, 2011, 22, 783-793.	0.7	27
35	Iontophoresis of minoxidil sulphate loaded microparticles, a strategy for follicular drug targeting?. Colloids and Surfaces B: Biointerfaces, 2015, 134, 408-412.	2.5	27
36	Key Technical Aspects Influencing the Accuracy of Tablet Subdivision. AAPS PharmSciTech, 2017, 18, 1393-1401.	1.5	26

Guilherme M Gelfuso

#	Article	IF	CITATIONS
37	Hot Melt Extrudates Formulated Using Design Space: One Simple Process for Both Palatability and Dissolution Rate Improvement. Journal of Pharmaceutical Sciences, 2018, 107, 286-296.	1.6	25
38	Development and validation of a simple chromatographic method for simultaneous determination of clindamycin phosphate and rifampicin in skin permeation studies. Journal of Pharmaceutical and Biomedical Analysis, 2018, 159, 331-340.	1.4	25
39	Mixture design applied in compatibility studies of catechin and lipid compounds. Journal of Pharmaceutical and Biomedical Analysis, 2018, 149, 612-617.	1.4	24
40	Incorporation of Eugenia dysenterica extract in microemulsions preserves stability, antioxidant effect and provides enhanced cutaneous permeation. Journal of Molecular Liquids, 2018, 265, 408-415.	2.3	24
41	Iontophoresis enhances voriconazole antifungal potency and corneal penetration. International Journal of Pharmaceutics, 2020, 576, 118991.	2.6	21
42	Microspheres prepared with different co-polymers of poly(lactic-glycolic acid) (PLGA) or with chitosan cause distinct effects on macrophages. Colloids and Surfaces B: Biointerfaces, 2015, 136, 678-686.	2.5	20
43	Latanoprost Loaded in Polymeric Nanocapsules for Effective Topical Treatment of Alopecia. AAPS PharmSciTech, 2020, 21, 305.	1.5	20
44	Topical Treatment for Scarring and Non-Scarring Alopecia: An Overview of the Current Evidence. Clinical, Cosmetic and Investigational Dermatology, 2021, Volume 14, 485-499.	0.8	19
45	Biodegradable microspheres containing leukotriene B4 and cell-free antigens from Histoplasma capsulatum activate murine bone marrow-derived macrophages. European Journal of Pharmaceutical Sciences, 2011, 44, 580-588.	1.9	18
46	Novel iron oxide nanocarriers loading finasteride or dutasteride: Enhanced skin penetration for topical treatment of alopecia. International Journal of Pharmaceutics, 2020, 587, 119709.	2.6	18
47	Follicular-targeted delivery of spironolactone provided by polymeric nanoparticles. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112101.	2.5	18
48	PrincÃpios bÃįsicos e aplicação da iontoforese na penetração cutânea de fÃįrmacos. Quimica Nova, 2008, 31, 1490-1498.	0.3	17
49	Novel ex vivo protocol using porcine vagina to assess drug permeation from mucoadhesive and colloidal pharmaceutical systems. Colloids and Surfaces B: Biointerfaces, 2017, 158, 222-228.	2.5	17
50	SLN- and NLC-Encapsulating Antifungal Agents: Skin Drug Delivery and their Unexplored Potential for Treating Onychomycosis. Current Pharmaceutical Design, 2018, 23, 6684-6695.	0.9	16
51	Combination of cyclodextrin complexation and iontophoresis as a promising strategy for the cutaneous delivery of aluminum-chloride phthalocyanine in photodynamic therapy. European Journal of Pharmaceutical Sciences, 2019, 139, 105056.	1.9	16
52	Nanostructured lipid carriers for hair follicle-targeted delivery of clindamycin and rifampicin to hidradenitis suppurativa treatment. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111448.	2.5	16
53	Versatile chromatographic method for catechin determination in development of topical formulations containing natural extracts. Biomedical Chromatography, 2018, 32, e4062.	0.8	15
54	Preformulation studies of finasteride to design matrix systems for topical delivery. Journal of Pharmaceutical and Biomedical Analysis, 2018, 161, 273-279.	1.4	15

#	Article	IF	CITATIONS
55	Microemulsions incorporating Brosimum gaudichaudii extracts as a topical treatment for vitiligo: In vitro stimulation of melanocyte migration and pigmentation. Journal of Molecular Liquids, 2019, 294, 111685.	2.3	15
56	Application of hot-melt extrusion in the complexation of naringenin with cyclodextrin using hydrophilic polymers. Advanced Powder Technology, 2022, 33, 103380.	2.0	15
57	Nanostructured lipid carriers loaded with an association of minoxidil and latanoprost for targeted topical therapy of alopecia. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 172, 78-88.	2.0	15
58	Development and Validation of a Simple and Selective Analytical HPLC Method for the Quantification of Oxaliplatin. Journal of Chemistry, 2015, 2015, 1-6.	0.9	14
59	LC–MS bioanalytical method for simultaneous determination of latanoprost and minoxidil in the skin. Journal of Pharmaceutical and Biomedical Analysis, 2020, 187, 113373.	1.4	14
60	Oscillatory shear rheology as an in-process control tool for 3D printing medicines production by fused deposition modeling. Journal of Manufacturing Processes, 2022, 76, 850-862.	2.8	14
61	Prostaglandin D2-loaded microspheres effectively activate macrophage effector functions. European Journal of Pharmaceutical Sciences, 2015, 78, 132-139.	1.9	13
62	Minoxidil topical treatment may be more efficient if applied on damp scalp in comparison with dry scalp. Dermatologic Therapy, 2016, 29, 330-333.	0.8	13
63	Subdivision of Tablets Containing Modified Delivery Technology: the Case of Orally Disintegrating Tablets. Journal of Pharmaceutical Innovation, 2018, 13, 261-269.	1.1	13
64	Current efforts and the potential of nanomedicine in treating fungal keratitis. Expert Review of Ophthalmology, 2010, 5, 365-384.	0.3	12
65	Nanostructured lipid carriers for targeting drug delivery to the epidermal layer. Therapeutic Delivery, 2016, 7, 735-737.	1.2	12
66	Hot-Melt Extrusion as an Advantageous Technology to Obtain Effervescent Drug Products. Pharmaceutics, 2020, 12, 779.	2.0	12
67	Topical and Transdermal Delivery of Drug-Loaded Nano/ Microsystems with Application of Physical Enhancement Techniques. Current Drug Targets, 2016, 17, 1545-1559.	1.0	12
68	Preformulation Studies to Guide the Production of Medicines by Fused Deposition Modeling 3D Printing. AAPS PharmSciTech, 2021, 22, 263.	1.5	12
69	In situ gelling microemulsion for topical ocular delivery of moxifloxacin and betamethasone. Journal of Molecular Liquids, 2022, 360, 119559.	2.3	12
70	Hyaluronidase-Loaded PLGA Microparticles as a New Strategy for the Treatment of Pulmonary Fibrosis. Tissue Engineering - Part A, 2015, 21, 246-256.	1.6	11
71	Chromatographic method for clobetasol propionate determination in hair follicles and in different skin layers. Biomedical Chromatography, 2017, 31, e3804.	0.8	11
72	Dissolution Enhancement in Cocoa Extract, Combining Hydrophilic Polymers through Hot-Melt Extrusion. Pharmaceutics, 2018, 10, 135.	2.0	11

Guilherme M Gelfuso

#	Article	IF	CITATIONS
73	Compatibility and stability studies involving polymers used in fused deposition modeling 3D printing of medicines. Journal of Pharmaceutical Analysis, 2022, 12, 424-435.	2.4	11
74	Anti-inflammatory, antimycobacterial and genotoxic evaluation of Doliocarpus dentatus. Journal of Ethnopharmacology, 2017, 204, 18-25.	2.0	10
75	New perspectives on the topical management of recurrent candidiasis. Drug Delivery and Translational Research, 2021, 11, 1568-1585.	3.0	10
76	Preparation of benznidazole pellets for immediate drug delivery using the extrusion spheronization technique. Drug Development and Industrial Pharmacy, 2017, 43, 762-769.	0.9	9
77	Stabilityâ€indicating analytical method of quantifying spironolactone and canrenone in dermatological formulations and iontophoretic skin permeation experiments. Biomedical Chromatography, 2019, 33, e4656.	0.8	9
78	The influence of sebaceous content on the performance of nanosystems designed for the treatment of follicular diseases. Journal of Drug Delivery Science and Technology, 2020, 59, 101895.	1.4	9
79	The Influence of Matrix Technology on the Subdivision of Sustained Release Matrix Tablets. AAPS PharmSciTech, 2020, 21, 8.	1.5	8
80	Evolution of quality on pharmaceutical design: regulatory requirement?. Accreditation and Quality Assurance, 2017, 22, 199-205.	0.4	7
81	Improvements of theobromine pharmaceutical properties using solid dispersions prepared with newfound technologies. Chemical Engineering Research and Design, 2018, 132, 1193-1201.	2.7	7
82	Emulsion incorporating Eugenia dysenterica aqueous extract entrapped in chitosan microparticles as a novel topical treatment of cutaneous infections. Journal of Drug Delivery Science and Technology, 2020, 55, 101372.	1.4	7
83	Skin Regenerative Potential of Cupuaçu Seed Extract (Theobroma grandiflorum), a Native Fruit from the Amazon: Development of a Topical Formulation Based on Chitosan-Coated Nanocapsules. Pharmaceutics, 2022, 14, 207.	2.0	7
84	Granules of finasteride and cyclodextrin obtained by hot-melt extrusion to target the hair follicles. Powder Technology, 2021, 391, 311-320.	2.1	6
85	An Update of the Brazilian Regulatory Bioequivalence Recommendations for Approval of Generic Topical Dermatological Drug Products. AAPS Journal, 2015, 17, 1517-1518.	2.2	5
86	Simple and Selective HPLC-UV/Vis Bioanalytical Method to Determine Aluminum Phthalocyanine Chloride in Skin Permeation Studies. Journal of Analytical Methods in Chemistry, 2018, 2018, 1-7.	0.7	5
87	Phonophoretic application of a glucosamine and chondroitin nanoemulsion for treatment of knee chondropathies. Nanomedicine, 2020, 15, 647-659.	1.7	5
88	In vitro skin model for the evaluation of burn healing drug delivery systems. Journal of Drug Delivery Science and Technology, 2021, 62, 102330.	1.4	5
89	Active Potential of Bacterial Cellulose-Based Wound Dressing: Analysis of Its Potential for Dermal Lesion Treatment. Pharmaceutics, 2022, 14, 1222.	2.0	5
90	Influence of monoolein on progesterone transdermal delivery. Brazilian Journal of Pharmaceutical Sciences, 2015, 51, 923-929.	1.2	4

#	Article	IF	CITATIONS
91	The influence of porosity on tablet subdivision. Particuology, 2020, 53, 192-196.	2.0	4
92	Subdivision of modified-release tablets: state-of-the-art and future perspectives. Therapeutic Delivery, 2020, 11, 285-287.	1.2	4
93	Overcoming hurdles in iontophoretic drug delivery: is skin the only barrier?. Therapeutic Delivery, 2014, 5, 493-496.	1.2	3
94	Oxaliplatin preformulation studies for the development of innovative topical drug delivery systems. Journal of Thermal Analysis and Calorimetry, 2017, 130, 1671-1681.	2.0	3
95	Comparison of Clobetasol Propionate Generics Using Simplified In vitro Bioequivalence Method for Topical Drug Products. Current Drug Delivery, 2018, 15, 998-1008.	0.8	3
96	As boas práticas de fabricação de medicamentos e suas determinantes. Vigilância Sanitária Em Debate: Sociedade, Ciência & Tecnologia, 2017, 5, 34.	0.3	3
97	Iontophoresis on minoxidil sulphate-loaded chitosan nanoparticles accelerates drug release, decreasing their targeting effect to hair follicles. Quimica Nova, 0, , .	0.3	2
98	Three-dimensional printed personalized drug devices with anatomical fit: a review. Journal of Pharmacy and Pharmacology, 2022, 74, 1391-1405.	1.2	2
99	Topical ophthalmic antimicrobials: unfulfilled demands and possibility of new investments in Brazil and in the United States. Brazilian Journal of Pharmaceutical Sciences, 0, 55, .	1.2	2
100	Validation of a simple chromatographic method for naringenin quantification in skin permeation experiments. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2022, 1201-1202, 123291.	1.2	2
101	Overcoming hurdles in iontophoretic drug delivery: is skin the only barrier?–Âan update. Therapeutic Delivery, 2019, 10, 211-214.	1.2	1
102	Thermal analysis applied to the development of nanostructured lipid carriers loading propranolol using quality-by-design strategies. Thermochimica Acta, 2022, 708, 179143.	1.2	1
103	Regulatory Requirements and Innovation: A Comparison of the Dermatologic Antifungal Drug Product Markets in Brazil and United States. Therapeutic Innovation and Regulatory Science, 2019, 53, 661-668.	0.8	0
104	Aqueous-Based Nanoemulsion Containing (-)-α-Bisabolol for Topical Treatment of Skin burns. Current Cosmetic Science, 2021, 01, .	0.1	0
105	Injeção sem agulhas: aplicações médicas e. BrasÃłia Médica, 2014, 50, 253-260.	0.0	0
106	Nanostructured Lipid Carriers Loaded with an Association of Minoxidil and Latanoprost for Targeted Topical Therapy of Alopecia. SSRN Electronic Journal, 0, , .	0.4	0