List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3317213/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Observability of temperate exoplanets with Ariel. Experimental Astronomy, 2022, 53, 375-390.	1.6	1
2	Water content trends in K2-138 and other low-mass multi-planetary systems. Astronomy and Astrophysics, 2022, 660, A102.	2.1	7
3	On the Stability of Low-mass Planets with Supercritical Hydrospheres. Astrophysical Journal, 2022, 931, 143.	1.6	0
4	The impact of turbulent vertical mixing in the Venus clouds on chemical tracers. Icarus, 2022, 386, 115148.	1.1	5
5	The Spatial and Temporal Distribution of Nighttime Ozone and Sulfur Dioxide in the Venus Mesosphere as Deduced From SPICAV UV Stellar Occultations. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006625.	1.5	6
6	Characterisation of the hydrospheres of TRAPPIST-1 planets. Astronomy and Astrophysics, 2021, 647, A53.	2.1	30
7	Evidence for SO ₂ latitudinal variations below the clouds of Venus. Astronomy and Astrophysics, 2021, 648, L8.	2.1	6
8	Mass–Radius Relationships for Irradiated Ocean Planets. Astrophysical Journal, 2021, 914, 84.	1.6	40
9	Instrumental requirements for the study of Venus' cloud top using the UV imaging spectrometer VeSUV. Advances in Space Research, 2021, 68, 275-291.	1.2	5
10	Sulfur monoxide dimer chemistry as a possible source of polysulfur in the upper atmosphere of Venus. Nature Communications, 2021, 12, 175.	5.8	11
11	ARES IV: Probing the Atmospheres of the Two Warm Small Planets HD 106315c and HD 3167c with the HST/WFC3 Camera*. Astronomical Journal, 2021, 161, 19.	1.9	25
12	Day–night cloud asymmetry prevents early oceans on Venus but not on Earth. Nature, 2021, 598, 276-280.	13.7	68
13	On Venus' cloud top chemistry, convective activity and topography: A perspective from HST. Icarus, 2020, 335, 113372.	1.1	11
14	Climatology of SO2 and UV absorber at Venus' cloud top from SPICAV-UV nadir dataset. Icarus, 2020, 335, 113368.	1.1	50
15	Constraining the early evolution of Venus and Earth through atmospheric Ar, Ne isotope and bulk K/U ratios. Icarus, 2020, 339, 113551.	1.1	47
16	Irradiated Ocean Planets Bridge Super-Earth and Sub-Neptune Populations. Astrophysical Journal Letters, 2020, 896, L22.	3.0	79
17	Escape of rock-forming volatile elements and noble gases from planetary embryos. Icarus, 2020, 347, 113772.	1.1	21
18	HDO and SO ₂ thermal mapping on Venus. Astronomy and Astrophysics, 2020, 639, A69.	2.1	19

#	Article	IF	CITATIONS
19	Planetary system LHS 1140 revisited with ESPRESSO and TESS. Astronomy and Astrophysics, 2020, 642, A121.	2.1	50
20	A stringent upper limit of the PH ₃ abundance at the cloud top of Venus. Astronomy and Astrophysics, 2020, 643, L5.	2.1	49
21	Long-term Variations of Venus's 365 nm Albedo Observed by Venus Express, Akatsuki, MESSENGER, and the Hubble Space Telescope. Astronomical Journal, 2019, 158, 126.	1.9	30
22	HDO and SO ₂ thermal mapping on Venus. Astronomy and Astrophysics, 2019, 623, A70.	2.1	26
23	No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature, 2019, 568, 517-520.	13.7	111
24	Modeling the albedo of Earth-like magma ocean planets with H2O-CO2 atmospheres. Icarus, 2019, 317, 583-590.	1.1	30
25	Discovery of cloud top ozone on Venus. Icarus, 2019, 319, 491-498.	1.1	19
26	The VenSpec suite on the ESA EnVision mission to Venus. , 2019, , .		16
27	The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter. Space Science Reviews, 2018, 214, 1.	3.7	119
28	Composition and Chemistry of the Neutral Atmosphere of Venus. Space Science Reviews, 2018, 214, 1.	3.7	82
29	The Venus Emissivity Mapper (VEM): obtaining global mineralogy of Venus from orbit. , 2018, , .		7
30	Night side distribution of SO2 content in Venus' upper mesosphere. Icarus, 2017, 294, 58-71.	1.1	32
31	Sulfur dioxide in the Venus atmosphere: I. Vertical distribution and variability. Icarus, 2017, 295, 16-33.	1.1	47
32	Sulfur dioxide in the Venus Atmosphere: II. Spatial and temporal variability. Icarus, 2017, 295, 1-15.	1.1	53
33	The relative influence of H ₂ O and CO ₂ on the primitive surface conditions and evolution of rocky planets. Journal of Geophysical Research E: Planets, 2017, 122, 1458-1486.	1.5	76
34	SPICAM on Mars Express: A 10 year in-depth survey of the Martian atmosphere. Icarus, 2017, 297, 195-216.	1.1	64
35	Venus: Tickling the clouds. Nature Astronomy, 2017, 1, .	4.2	0
36	Thermal radiation of magma ocean planets using a 1â€D radiativeâ€convective model of H ₂ Oâ€CO ₂ atmospheres. Journal of Geophysical Research E: Planets, 2017, 122, 1539-1553.	1.5	47

3

#	Article	IF	CITATIONS
37	The Venus Emissivity Mapper concept. , 2017, , .		3
38	Variations of water vapor and cloud top altitude in the Venus' mesosphere from SPICAV/VEx observations. Icarus, 2016, 275, 143-162.	1.1	67
39	Formation and Evolution of Protoatmospheres. Space Science Reviews, 2016, 205, 153-211.	3.7	68
40	Influence of Venus topography on the zonal wind and UV albedo at cloud top level: The role of stationary gravity waves. Journal of Geophysical Research E: Planets, 2016, 121, 1087-1101.	1.5	60
41	The Venus Emissivity Mapper (VEM) concept. , 2016, , .		5
42	Variability of the nitric oxide nightglow at Venus during solar minimum. Journal of Geophysical Research E: Planets, 2016, 121, 846-853.	1.5	3
43	Formation and Evolution of Protoatmospheres. Space Sciences Series of ISSI, 2016, , 193-251.	0.0	Ο
44	Thermal structure of Venus nightside upper atmosphere measured by stellar occultations with SPICAV/Venus Express. Planetary and Space Science, 2015, 113-114, 321-335.	0.9	37
45	Long-term variations of the UV contrast on Venus observed by the Venus Monitoring Camera on board Venus Express. Icarus, 2015, 253, 1-15.	1.1	36
46	WATER FORMATION IN THE UPPER ATMOSPHERE OF THE EARLY EARTH. Astrophysical Journal Letters, 2015, 807, L29.	3.0	4
47	Coordinated Hubble Space Telescope and Venus Express Observations of Venus' upper cloud deck. Icarus, 2015, 258, 309-336.	1.1	35
48	Search for horizontal and vertical variations of CO in the day and night side lower mesosphere of Venus from CSHELL/IRTF <mml:math altimg="si0010.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mh>4.53<mml:mspace width="0.25em"></mml:mspace><mml:mi mathvariant="normal">1/4</mml:mi>4.53<mml:mspace width="0.25em"></mml:mspace><mml:mi mathvariant="normal">0.1/4</mml:mi>1/41/40.1/4<td>0.9</td><td>30</td></mml:mh></mml:math>	0.9	30
49	Observations. Planetary and Space Science, 2015, 113-114, 256-263. Preliminary study of Venus cloud layers with polarimetric data from SPICAV/VEx. Planetary and Space Science, 2015, 113-114, 159-168.	0.9	30
50	Escape of the martian protoatmosphere and initial water inventory. Planetary and Space Science, 2014, 98, 106-119.	0.9	83
51	Thermal evolution of an early magma ocean in interaction with the atmosphere: conditions for the condensation of a water ocean. BIO Web of Conferences, 2014, 2, 01006.	0.1	1
52	3D modelling of the early martian climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds. Icarus, 2013, 222, 81-99.	1.1	259
53	Variations of sulphur dioxide at the cloud top of Venus's dynamic atmosphere. Nature Geoscience, 2013, 6, 25-28.	5.4	164
54	Thermal evolution of an early magma ocean in interaction with the atmosphere. Journal of Geophysical Research E: Planets, 2013, 118, 1155-1176.	1.5	173

#	Article	IF	CITATIONS
55	Simulations of the latitudinal variability of COâ€like and OCSâ€like passive tracers below the clouds of Venus using the Laboratoire de Météorologie Dynamique GCM. Journal of Geophysical Research E: Planets, 2013, 118, 1983-1990.	1.5	7
56	A simple 1â€Ð radiativeâ€convective atmospheric model designed for integration into coupled models of magma ocean planets. Journal of Geophysical Research, 2012, 117, .	3.3	60
57	Vertical profiling of SO2 and SO above Venus' clouds by SPICAV/SOIR solar occultations. Icarus, 2012, 217, 740-751.	1.1	103
58	A layer of ozone detected in the nightside upper atmosphere of Venus. Icarus, 2011, 216, 82-85.	1.1	81
59	An investigation of the SO2 content of the venusian mesosphere using SPICAV-UV in nadir mode. Icarus, 2011, 211, 58-69.	1.1	86
60	Water vapor abundance near the surface of Venus from Venus Express/VIRTIS observations. Journal of Geophysical Research, 2009, 114, .	3.3	55
61	Evidence for carbonyl sulfide (OCS) conversion to CO in the lower atmosphere of Venus. Journal of Geophysical Research, 2009, 114, .	3.3	56
62	A latitudinal survey of CO, OCS, H ₂ O, and SO ₂ in the lower atmosphere of Venus: Spectroscopic studies using VIRTISâ€H. Journal of Geophysical Research, 2008, 113, .	3.3	79
63	Remote sensing of Venus' lower atmosphere from ground-based IR spectroscopy: Latitudinal and vertical distribution of minor species. Planetary and Space Science, 2006, 54, 1360-1370.	0.9	90
64	Latitudinal variations of CO and OCS in the lower atmosphere of Venus from near-infrared nightside spectro-imaging. Icarus, 2005, 179, 375-386.	1.1	40
65	The gyromagnetic ratio of rapidly rotating compact stars in general relativity. Classical and Quantum Gravity, 2003, 20, 3051-3060.	1.5	9