Lauren Y Atlas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/331720/publications.pdf

Version: 2024-02-01

56 papers 6,243 citations

201674 27 h-index 55 g-index

64 all docs

64
docs citations

64 times ranked 7133 citing authors

#	Article	IF	CITATIONS
1	An fMRI-Based Neurologic Signature of Physical Pain. New England Journal of Medicine, 2013, 368, 1388-1397.	27.0	1,294
2	The neuroscience of placebo effects: connecting context, learning and health. Nature Reviews Neuroscience, 2015, 16, 403-418.	10.2	555
3	Neural Responses to Monetary Incentives in Major Depression. Biological Psychiatry, 2008, 63, 686-692.	1.3	442
4	Modeling the hemodynamic response function in fMRI: Efficiency, bias and mis-modeling. NeuroImage, 2009, 45, S187-S198.	4.2	435
5	Brain Mediators of Predictive Cue Effects on Perceived Pain. Journal of Neuroscience, 2010, 30, 12964-12977.	3.6	355
6	Implications of Placebo and Nocebo Effects for Clinical Practice: Expert Consensus. Psychotherapy and Psychosomatics, 2018, 87, 204-210.	8.8	318
7	How expectations shape pain. Neuroscience Letters, 2012, 520, 140-148.	2.1	294
8	Predicting Individual Differences in Placebo Analgesia: Contributions of Brain Activity during Anticipation and Pain Experience. Journal of Neuroscience, 2011, 31, 439-452.	3.6	258
9	Dynamic connectivity regression: Determining state-related changes in brain connectivity. Neurolmage, 2012, 61, 907-920.	4.2	238
10	Amygdala activation in the processing of neutral faces in social anxiety disorder: Is neutral really neutral?. Psychiatry Research - Neuroimaging, 2006, 148, 55-59.	1.8	206
11	Dissociable Influences of Opiates and Expectations on Pain. Journal of Neuroscience, 2012, 32, 8053-8064.	3.6	146
12	Quantifying cerebral contributions to pain beyond nociception. Nature Communications, 2017, 8, 14211.	12.8	144
13	Pain in the ACC?. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2474-5.	7.1	136
14	A Meta-analysis of Brain Mechanisms of Placebo Analgesia: Consistent Findings and Unanswered Questions. Handbook of Experimental Pharmacology, 2014, 225, 37-69.	1.8	110
15	Brain mediators of the effects of noxious heat on pain. Pain, 2014, 155, 1632-1648.	4.2	101
16	Mood, anxiety, and incomplete seizure control affect quality of life after epilepsy surgery. Neurology, 2014, 82, 887-894.	1.1	99
17	The Confidence Database. Nature Human Behaviour, 2020, 4, 317-325.	12.0	84
18	Neural correlates of inhibitory deficits in depression. Psychiatry Research - Neuroimaging, 2010, 181, 30-35.	1.8	78

#	Article	IF	CITATIONS
19	Common representation of pain and negative emotion in the midbrain periaqueductal gray. Social Cognitive and Affective Neuroscience, 2013, 8, 609-616.	3.0	78
20	Instructed knowledge shapes feedback-driven aversive learning in striatum and orbitofrontal cortex, but not the amygdala. ELife, 2016, 5, .	6.0	75
21	Group-regularized individual prediction: theory and application to pain. NeuroImage, 2017, 145, 274-287.	4.2	59
22	Remembering the good times: neural correlates of affect regulation. NeuroReport, 2007, 18, 1771-1774.	1.2	51
23	Dynamic functional connectivity using state-based dynamic community structure: Method and application to opioid analgesia. Neurolmage, 2015, 108, 274-291.	4.2	46
24	Multiple Brain Networks Mediating Stimulus–Pain Relationships in Humans. Cerebral Cortex, 2020, 30, 4204-4219.	2.9	46
25	Pain or nociception? Subjective experience mediates the effects of acute noxious heat on autonomic responses. Pain, 2018, 159, 699-711.	4.2	45
26	What Should Clinicians Tell Patients about Placebo and Nocebo Effects? Practical Considerations Based on Expert Consensus. Psychotherapy and Psychosomatics, 2021, 90, 49-56.	8.8	39
27	Opposing Effects of Expectancy and Somatic Focus on Pain. PLoS ONE, 2012, 7, e38854.	2.5	38
28	Pain-Evoked Reorganization in Functional Brain Networks. Cerebral Cortex, 2020, 30, 2804-2822.	2.9	37
29	Specifying the non-specific factors underlying opioid analgesia: expectancy, attention, and affect. Psychopharmacology, 2014, 231, 813-823.	3.1	36
30	How instructions shape aversive learning: higher order knowledge, reversal learning, and the role of the amygdala. Current Opinion in Behavioral Sciences, 2019, 26, 121-129.	3.9	30
31	Pain Neuroimaging in Humans: A Primer for Beginners and Non-Imagers. Journal of Pain, 2018, 19, 961.e1-961.e21.	1.4	29
32	Distinguishing pain from nociception, salience, and arousal: How autonomic nervous system activity can improve neuroimaging tests of specificity. NeuroImage, 2020, 204, 116254.	4.2	28
33	How Is Pain Influenced by Cognition? Neuroimaging Weighs In. Perspectives on Psychological Science, 2013, 8, 91-97.	9.0	27
34	A social affective neuroscience lens on placebo analgesia. Trends in Cognitive Sciences, 2021, 25, 992-1005.	7.8	26
35	Effect sizes and test-retest reliability of the fMRI-based neurologic pain signature. NeuroImage, 2022, 247, 118844.	4.2	26
36	Applications of dynamic functional connectivity to pain and its modulation. Pain Reports, 2019, 4, e752.	2.7	22

#	Article	IF	Citations
37	Pain or nociception? Subjective experience mediates the effects of acute noxious heat on autonomic responses - corrected and republished. Pain, 2019, 160, 1469-1481.	4.2	22
38	Prepared stimuli enhance aversive learning without weakening the impact of verbal instructions. Learning and Memory, 2018, 25, 100-104.	1.3	21
39	Individual variability in brain representations of pain. Nature Neuroscience, 2022, 25, 749-759.	14.8	20
40	Anticipatory Effects on Perceived Pain: Associations With Development and Anxiety. Psychosomatic Medicine, 2018, 80, 853-860.	2.0	17
41	Confidence in subjective pain is predicted by reaction time during decision making. Scientific Reports, 2020, 10, 21373.	3.3	14
42	Threat-anticipatory psychophysiological response is enhanced in youth with anxiety disorders and correlates with prefrontal cortex neuroanatomy. Journal of Psychiatry and Neuroscience, 2021, 46, E212-E221.	2.4	14
43	The need for diversity in research on facial expressions of pain. Pain, 2019, 160, 1901-1902.	4.2	13
44	A multistudy analysis reveals that evoked pain intensity representation is distributed across brain systems. PLoS Biology, 2022, 20, e3001620.	5.6	11
45	The Role of Social and Interpersonal Factors in Placebo Analgesia. International Review of Neurobiology, 2018, 138, 161-179.	2.0	10
46	Threat imminence reveals links among unfolding of anticipatory physiological response, cortical-subcortical intrinsic functional connectivity, and anxiety. Neurobiology of Stress, 2022, 16, 100428.	4.0	10
47	Expectancies and Beliefs. , 2013, , .		8
48	Expectations about pain and analgesic treatment are shaped by medical providers' facial appearances: Evidence from five online clinical simulation experiments. Social Science and Medicine, 2021, 281, 114091.	3.8	8
49	Test-Retest Reliability of an Adaptive Thermal Pain Calibration Procedure in Healthy Volunteers. Journal of Pain, 2022, 23, 1543-1555.	1.4	8
50	Rating expectations can slow aversive reversal learning. Psychophysiology, 2022, 59, e13979.	2.4	7
51	The Neuroscience of Pain: Biobehavioral, Developmental, and Psychosocial Mechanisms Relevant to Intervention Targets. Psychosomatic Medicine, 2018, 80, 788-790.	2.0	6
52	Dispositional Mindfulness and Acute Heat Pain: Comparing Stimulus-Evoked Pain With Summary Pain Assessment. Psychosomatic Medicine, 2021, 83, 539-548.	2.0	5
53	Flawed methodology undermines conclusions about opioid-induced pleasure: implications for psychopharmacology. British Journal of Anaesthesia, 2020, 124, e29-e33.	3.4	3
54	Is placebo analgesia for heat pain a sensory effect? An exploratory study on minimizing the influence of response bias. Neurobiology of Pain (Cambridge, Mass), 2019, 5, 100023.	2.5	1

#	Article	IF	CITATIONS
55	Reply to Zaman et al Pain, 2019, 160, 1485-1486.	4.2	1
56	"Consensus on Placebo and Nocebo Effects Connects Science with Practice:―Reply to "Questioning the Consensus on Placebo and Nocebo Effects― Psychotherapy and Psychosomatics, 2021, 90, 213-214.	8.8	1