Yangguang Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3317119/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A high-performance magnetorheological material: preparation, characterization and magnetic-mechanic coupling properties. Soft Matter, 2011, 7, 5246.	2.7	145
2	Soft magnetorheological polymer gels with controllable rheological properties. Smart Materials and Structures, 2013, 22, 075029.	3.5	83
3	The investigation on the nonlinearity of plasticine-like magnetorheological material under oscillatory shear rheometry. Journal of Rheology, 2012, 56, 1375-1391.	2.6	73
4	Creep and recovery behaviors of magnetorheological plastomer and its magnetic-dependent properties. Soft Matter, 2012, 8, 8483.	2.7	73
5	Control of the Damping Properties of Magnetorheological Elastomers by Using Polycaprolactone as a Temperature-Controlling Component. Industrial & Engineering Chemistry Research, 2012, 51, 6395-6403.	3.7	55
6	Simulation of magneto-induced rearrangeable microstructures of magnetorheological plastomers. Soft Matter, 2013, 9, 10069.	2.7	48
7	Recent progress on the magnetorheological plastomers. International Journal of Smart and Nano Materials, 2015, 6, 135-148.	4.2	27
8	Magnetorheological Elastomers: Materials and Applications. , 0, , .		26
9	Morphology and optical properties of Co doped ZnO textured thin films. Journal of Alloys and Compounds, 2011, 509, 9116-9122.	5.5	25
10	Magneto-induced normal stress of magnetorheological plastomer. AIP Advances, 2013, 3, .	1.3	25
11	Magneto-induced microstructure characterization of magnetorheological plastomers using impedance spectroscopy. Soft Matter, 2013, 9, 7701.	2.7	24
12	Synthesis of 1D and heavily doped Zn1â^'xCoxO six-prism nanorods: improvement of blue–green emission and room temperature ferromagnetism. Journal of Materials Chemistry, 2011, 21, 18810.	6.7	19
13	Magneto-dependent stress relaxation of magnetorheological gels. Smart Materials and Structures, 2017, 26, 115005.	3.5	19
14	Squeeze flow behaviors of magnetorheological plastomers under constant volume. Journal of Rheology, 2014, 58, 659-679.	2.6	17
15	Magneto-induced large deformation and high-damping performance of a magnetorheological plastomer. Smart Materials and Structures, 2014, 23, 105028.	3.5	16
16	Magneto-induced stress enhancing effect in a colloidal suspension of paramagnetic and superparamagnetic particles dispersed in a ferrofluid medium. Soft Matter, 2014, 10, 813-818.	2.7	14
17	Influence of γ radiation on the shear modulus of magnetorheological elastomer. Materials Letters, 2016, 174, 79-81.	2.6	12
18	The energy dissipation behaviors of magneto-sensitive polymer gel under cyclic shear loading. Materials Letters, 2015, 158, 406-408.	2.6	10

YANGGUANG XU

#	Article	IF	CITATIONS
19	Investigation on the phase-based fuzzy logic controller for magnetorheological elastomer vibration absorber. Journal of Intelligent Material Systems and Structures, 2017, 28, 728-739.	2.5	9
20	The transition from stress softening to stress hardening under cyclic loading induced by magnetic field for magneto-sensitive polymer gels. Applied Physics Letters, 2016, 108, 161902.	3.3	6
21	Magneto-Sensitive Smart Materials and Magnetorheological Mechanism. , 0, , .		5
22	Rate-dependent viscoelasticity of an impact-hardening polymer under oscillatory shear. Materials Research Express, 2020, 7, 075701.	1.6	2
23	High-damping-performance magnetorheological material for passive or active vibration control. , 2016, , .		0