
Diego Turrini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3316776/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature, 2015, 528, 241-244.	13.7	276
2	A chemical survey of exoplanets with ARIEL. Experimental Astronomy, 2018, 46, 135-209.	1.6	249
3	Spectroscopic Characterization of Mineralogy and Its Diversity Across Vesta. Science, 2012, 336, 697-700.	6.0	240
4	Dark material on Vesta from the infall of carbonaceous volatile-rich material. Nature, 2012, 491, 83-86.	13.7	151
5	DETECTION OF WIDESPREAD HYDRATED MATERIALS ON VESTA BY THE VIR IMAGING SPECTROMETER ON BOARD THE <i>DAWN</i> MISSION. Astrophysical Journal Letters, 2012, 758, L36.	3.0	117
6	The GAPS programme with HARPS-N at TNG. Astronomy and Astrophysics, 2013, 554, A28.	2.1	103
7	TWO MASS DISTRIBUTIONS IN THE L 1641 MOLECULAR CLOUDS: THE <i>HERSCHEL</i> CONNECTION OF DENSE CORES AND FILAMENTS IN ORION A. Astrophysical Journal Letters, 2013, 777, L33.	3.0	95
8	JIRAM, the Jovian Infrared Auroral Mapper. Space Science Reviews, 2017, 213, 393-446.	3.7	91
9	Clusters of cyclones encircling Jupiter's poles. Nature, 2018, 555, 216-219.	13.7	90
10	Composition of the Rheasilvia basin, a window into Vesta's interior. Journal of Geophysical Research E: Planets, 2013, 118, 335-346.	1.5	84
11	Planetary formation in thel ³ Cephei system. Astronomy and Astrophysics, 2004, 427, 1097-1104.	2.1	68
12	Tracing the Formation History of Giant Planets in Protoplanetary Disks with Carbon, Oxygen, Nitrogen, and Sulfur. Astrophysical Journal, 2021, 909, 40.	1.6	67
13	The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets. Planetary and Space Science, 2014, 104, 122-140.	0.9	56
14	The science of ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey). Proceedings of SPIE, 2016, , .	0.8	56
15	Probing the history of Solar system through the cratering records on Vesta and Ceres. Monthly Notices of the Royal Astronomical Society, 2011, 413, 2439-2466.	1.6	54
16	Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter. Science, 2018, 361, 774-777.	6.0	53
17	Consequences of planetary migration on the minor bodies of the early solar system. Astronomy and Astrophysics, 2019, 623, A169.	2.1	51
18	JOVIAN EARLY BOMBARDMENT: PLANETESIMAL EROSION IN THE INNER ASTEROID BELT. Astrophysical Journal, 2012, 750, 8.	1.6	50

#	Article	IF	CITATIONS
19	Uranus and Neptune missions: A study in advance of the next Planetary Science Decadal Survey. Planetary and Space Science, 2019, 177, 104680.	0.9	50
20	Evolution of Icy Satellites. Space Science Reviews, 2010, 153, 447-484.	3.7	49
21	Spectrophotometric investigation of Phobos with the Rosetta OSIRIS-NAC camera and implications for its collisional capture. Monthly Notices of the Royal Astronomical Society, 2012, 427, 3230-3243.	1.6	47
22	SIMBIO-SYS: Scientific Cameras and Spectrometer for the BepiColombo Mission. Space Science Reviews, 2020, 216, 1.	3.7	47
23	Vesta surface thermal properties map. Geophysical Research Letters, 2014, 41, 1438-1443.	1.5	46
24	Vesta and Ceres: Crossing the History of the Solar System. Space Science Reviews, 2011, 163, 25-40.	3.7	42
25	Rapid contraction of giant planets orbiting the 20-million-year-old star V1298 Tau. Nature Astronomy, 2022, 6, 232-240.	4.2	40
26	lce Giant Systems: The scientific potential of orbital missions to Uranus and Neptune. Planetary and Space Science, 2020, 191, 105030.	0.9	39
27	LAPLACE: A mission to Europa and the Jupiter System for ESA's Cosmic Vision Programme. Experimental Astronomy, 2009, 23, 849-892.	1.6	38
28	Shape and obliquity effects on the thermal evolution of the Rosetta target 67P/Churyumov-Gerasimenko cometary nucleus. Icarus, 2010, 207, 341-358.	1.1	38
29	Probing the origin of the dark material on Iapetus. Monthly Notices of the Royal Astronomical Society, 2010, 403, 1113-1130.	1.6	38
30	The comparative exploration of the ice giant planets with twin spacecraft: Unveiling the history of our Solar System. Planetary and Space Science, 2014, 104, 93-107.	0.9	31
31	The EChO science case. Experimental Astronomy, 2015, 40, 329-391.	1.6	31
32	Is Vesta an intact and pristine protoplanet?. Icarus, 2015, 254, 190-201.	1.1	30
33	Infrared observations of Jovian aurora from Juno's first orbits: Main oval and satellite footprints. Geophysical Research Letters, 2017, 44, 5308-5316.	1.5	30
34	Planetesimals and Satellitesimals: Formation ofÂtheÂSatellite Systems. Space Science Reviews, 2010, 153, 431-446.	3.7	29
35	The contamination of the surface of Vesta by impacts and the delivery of the dark material. Icarus, 2014, 240, 86-102.	1.1	28
36	From Gas to Satellitesimals: Disk Formation andÂEvolution. Space Science Reviews, 2010, 153, 411-429.	3.7	27

#	Article	IF	CITATIONS
37	The heating history of Vesta and the onset of differentiation. Meteoritics and Planetary Science, 2013, 48, 2316-2332.	0.7	27
38	The GAPS Programme at TNG. Astronomy and Astrophysics, 2021, 645, A71.	2.1	25
39	First Estimate of Wind Fields in the Jupiter Polar Regions From JIRAMâ€Juno Images. Journal of Geophysical Research E: Planets, 2018, 123, 1511-1524.	1.5	24
40	Two‥ear Observations of the Jupiter Polar Regions by JIRAM on Board Juno. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006098.	1.5	24
41	The GAPS Programme at TNG. Astronomy and Astrophysics, 2020, 642, A133.	2.1	23
42	A new perspective on the irregular satellites of Saturn - I. Dynamical and collisional history. Monthly Notices of the Royal Astronomical Society, 2008, 391, 1029-1051.	1.6	22
43	The Formation of Jupiter, the Jovian Early Bombardment and the Delivery of Water to the Asteroid Belt: The Case of (4) Vesta. Life, 2014, 4, 4-34.	1.1	22
44	Anti-correlation between multiplicity and orbital properties in exoplanetary systems as a possible record of their dynamical histories. Astronomy and Astrophysics, 2017, 605, L4.	2.1	22
45	A new perspective on the irregular satellites of Saturn - II. Dynamical and physical origin. Monthly Notices of the Royal Astronomical Society, 2009, 392, 455-474.	1.6	21
46	The Phase A study of the ESA M4 mission candidate ARIEL. Experimental Astronomy, 2018, 46, 211-239.	1.6	21
47	The role of planetary formation and evolution in shaping the composition of exoplanetary atmospheres. Experimental Astronomy, 2015, 40, 501-522.	1.6	20
48	Preliminary results on the composition of Jupiter's troposphere in hot spot regions from the JIRAM/Juno instrument. Geophysical Research Letters, 2017, 44, 4615-4624.	1.5	20
49	Preliminary JIRAM results from Juno polar observations: 2. Analysis of the Jupiter southern H ₃ ⁺ emissions and comparison with the north aurora. Geophysical Research Letters, 2017, 44, 4633-4640.	1.5	20
50	Quasi-3-D model to describe topographic effects on non-spherical comet nucleus evolution. Planetary and Space Science, 2008, 56, 1977-1991.	0.9	19
51	The contribution of the ARIEL space mission to the study of planetary formation. Experimental Astronomy, 2018, 46, 45-65.	1.6	19
52	Preliminary JIRAM results from Juno polar observations: 1. Methodology and analysis applied to the Jovian northern polar region. Geophysical Research Letters, 2017, 44, 4625-4632.	1.5	18
53	Normalized angular momentum deficit: a tool for comparing the violence of the dynamical histories of planetary systems. Astronomy and Astrophysics, 2020, 636, A53.	2.1	18
54	Exploring the link between star and planet formation with Ariel. Experimental Astronomy, 2022, 53, 225-278.	1.6	18

#	Article	IF	CITATIONS
55	Olivine on Vesta as exogenous contaminants brought by impacts: Constraints from modeling Vesta's collisional history and from impact simulations. Icarus, 2016, 280, 328-339.	1.1	17
56	Characterization of the white ovals on Jupiter's southern hemisphere using the first data by the Juno/JIRAM instrument. Geophysical Research Letters, 2017, 44, 4660-4668.	1.5	15
57	Dust-to-gas Ratio Resurgence in Circumstellar Disks Due to the Formation of Giant Planets: The Case of HD 163296. Astrophysical Journal, 2019, 877, 50.	1.6	15
58	Morphology of the Auroral Tail of Io, Europa, and Ganymede From JIRAM Lâ€Band Imager. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029450.	0.8	15
59	The primordial collisional history of Vesta: crater saturation, surface evolution and survival of the basaltic crust. Planetary and Space Science, 2014, 103, 82-95.	0.9	14
60	On the Spatial Distribution of Minor Species in Jupiter's Troposphere as Inferred From Juno JIRAM Data. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006206.	1.5	14
61	Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions. Geophysical Research Letters, 2017, 44, 4641-4648.	1.5	13
62	A Review of the in Situ Probe Designs from Recent Ice Giant Mission Concept Studies. Space Science Reviews, 2020, 216, 1.	3.7	13
63	The influence of space environment on the evolution of Mercury. Icarus, 2014, 239, 281-290.	1.1	12
64	Science Goals and Mission Objectives for the Future Exploration of Ice Giants Systems: A Horizon 2061 Perspective. Space Science Reviews, 2021, 217, 1.	3.7	11
65	Oscillations and Stability of the Jupiter Polar Cyclones. Geophysical Research Letters, 2021, 48, e2021GL094235.	1.5	11
66	The homogeneous characterisation of Ariel host stars. Experimental Astronomy, 2022, 53, 473-510.	1.6	10
67	The ARIEL space mission. , 2018, , .		10
68	Analysis of IR-bright regions of Jupiter in JIRAM-Juno data: Methods and validation of algorithms. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 202, 200-209.	1.1	8
69	Mapping Io's Surface Composition With Juno/JIRAM. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006522.	1.5	8
70	Ariel stellar characterisation. Astronomy and Astrophysics, 2022, 663, A161.	2.1	7
71	Dust Resurgence in Protoplanetary Disks Due to Planetesimal–Planet Interactions. Astrophysical Journal Letters, 2022, 927, L22.	3.0	6
72	Asteroid 4 Vesta: Dynamical and collisional evolution during the Late Heavy Bombardment. Icarus, 2016, 271, 170-179.	1.1	5

#	Article	IF	CITATIONS
73	Juno/JIRAM: Planning and commanding activities. Advances in Space Research, 2020, 65, 598-615.	1.2	5
74	On the clouds and ammonia in Jupiter's upper troposphere from Juno JIRAM reflectivity observations. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4892-4907.	1.6	5
75	Saturn Satellites as Seen by Cassini Mission. Earth, Moon and Planets, 2009, 105, 289-310.	0.3	4
76	lce giant system exploration within ESA's Voyage 2050. Experimental Astronomy, 2022, 54, 1015-1025.	1.6	4
77	JIRAM, the Jovian Infrared Auroral Mapper. , 2014, , 271-324.		4
78	The late accretion and erosion of Vesta's crust recorded by eucrites and diogenites as an astrochemical window into the formation of Jupiter and the early evolution of the Solar System. Icarus, 2018, 311, 224-241.	1.1	3
79	Future Missions to the Giant Planets that Can Advance Atmospheric Science Objectives. Space Science Reviews, 2020, 216, 1.	3.7	3
80	Stability of the Jupiter Southern Polar Vortices Inspected Through Vorticity Using Juno/JIRAM Data. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	3
81	THE ONSET OF DIFFERENTIATION AND INTERNAL EVOLUTION: THE CASE OF 21 LUTETIA. Astrophysical Journal, 2013, 770, 50.	1.6	1
82	From Gas to Satellitesimals: Disk Formation andÂEvolution. Space Sciences Series of ISSI, 2010, , 409-427.	0.0	1
83	Planetesimals and Satellitesimals: Formation ofÂtheÂSatellite Systems. Space Sciences Series of ISSI, 2010, , 429-444.	0.0	1
84	Evolution of Icy Satellites. Space Sciences Series of ISSI, 2010, , 445-482.	0.0	1
85	Cratering records on Vesta and Ceres: a probe in the history of Solar System?. EAS Publications Series, 2010, 41, 403-407.	0.3	0
86	Preparing EChO space mission: laboratory simulation of planetary atmospheres. , 2014, , .		0
87	IDIS Small Bodies and Dust Node: Technical innovation and science. Advances in Space Research, 2015, 55, 747-752.	1.2	0
88	Anti-correlation between multiplicity and orbital properties in exoplanetary systems as a possible record of their dynamical histories (Corrigendum). Astronomy and Astrophysics, 2018, 614, C3.	2.1	0
89	Vesta's Crust And The Tale Of The Birth Of The Solar System. , 2018, , .		0
90	Effect of clouds on emission spectra for super Venus. Astrophysics and Space Science, 2022, 367, 1.	0.5	0