Hong-Chen Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3316708/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tyrosine phosphorylation of lamin A by Src promotes disassembly of nuclear lamina in interphase. Life Science Alliance, 2021, 4, e202101120.	2.8	5
2	MicroRNAâ€210 repression facilitates advanced glycation endâ€product (AGE)â€induced cardiac mitochondrial dysfunction and apoptosis via JNK activation. Journal of Cellular Biochemistry, 2021, 122, 1873-1885.	2.6	7
3	Lamin Aâ€mediated nuclear lamina integrity is required for proper ciliogenesis. EMBO Reports, 2020, 21, e49680.	4.5	10
4	Phosphorylation of adducin-1 by cyclin-dependent kinase 5 is important for epidermal growth factor-induced cell migration. Scientific Reports, 2019, 9, 13703.	3.3	4
5	Src and SHP2 coordinately regulate the dynamics and organization of vimentin filaments during cell migration. Oncogene, 2019, 38, 4075-4094.	5.9	30
6	Biogenesis of podosome rosettes through fission. Scientific Reports, 2018, 8, 524.	3.3	18
7	Adducinâ€1 is essential for spindle pole integrity through its interaction with TPX2. EMBO Reports, 2018, 19, .	4.5	11
8	STIM1-dependent Ca2+ signaling regulates podosome formation to facilitate cancer cell invasion. Scientific Reports, 2017, 7, 11523.	3.3	23
9	Adducin family proteins possess different nuclear export potentials. Journal of Biomedical Science, 2017, 24, 30.	7.0	12
10	Phosphorylation of E-cadherin at threonine 790 by protein kinase CÎ′ reduces β-catenin binding and suppresses the function of E-cadherin. Oncotarget, 2016, 7, 37260-37276.	1.8	17
11	Gab1 is essential for membrane translocation, activity and integrity of mTORCs after EGF stimulation in urothelial cell carcinoma. Oncotarget, 2015, 6, 1478-1489.	1.8	11
12	Protein tyrosine phosphatase SHP2 promotes invadopodia formation through suppression of Rho signaling. Oncotarget, 2015, 6, 23845-23856.	1.8	9
13	Adducin-1 is essential for mitotic spindle assembly through its interaction with myosin-X. Journal of Cell Biology, 2014, 204, 19-28.	5.2	42
14	Protein tyrosine phosphatase SHP2 suppresses podosome rosette formation in Src-transformed fibroblasts. Journal of Cell Science, 2013, 126, 657-666.	2.0	16
15	Phosphorylation of moesin by c-Jun N-terminal kinase is important for podosome rosette formation in Src-transformed fibroblasts. Journal of Cell Science, 2013, 126, 5670-80.	2.0	14
16	p120RasGAP-Mediated Activation of c-Src Is Critical for Oncogenic Ras to Induce Tumor Invasion. Cancer Research, 2012, 72, 2405-2415.	0.9	23
17	αâ€Adducin Translocates to the Nucleus upon Loss of Cell–Cell Adhesions. Traffic, 2011, 12, 1327-1340.	2.7	22
18	FAK is required for the assembly of podosome rosettes. Journal of Cell Biology, 2011, 195, 113-129.	5.2	55

Hong-Chen Chen

#	Article	IF	CITATIONS
19	Functional suppression of E-cadherin by protein kinase Cδ. Journal of Cell Science, 2009, 122, 513-523.	2.0	17
20	Phosphorylation of adducin by protein kinase Cδ promotes cell motility. Journal of Cell Science, 2007, 120, 1157-1167.	2.0	34
21	Effect of aristolochic acid on intracellular calcium concentration and its links with apoptosis in renal tubular cells. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 2167-2177.	4.9	71
22	Crosstalk between hepatocyte growth factor and integrin signaling pathways. Journal of Biomedical Science, 2006, 13, 215-223.	7.0	34
23	Direct Interaction of Focal Adhesion Kinase (FAK) with Met Is Required for FAK To Promote Hepatocyte Growth Factor-Induced Cell Invasion. Molecular and Cellular Biology, 2006, 26, 5155-5167.	2.3	134
24	Differential Effect of the Focal Adhesion Kinase Y397F Mutant on v-Src-Stimulated Cell Invasion and Tumor Growth. Journal of Biomedical Science, 2005, 12, 571-585.	7.0	13
25	Blockade of v-Src-stimulated tumor formation by the Src homology 3 domain of Crk-associated substrate (Cas). FEBS Letters, 2004, 557, 221-227.	2.8	7
26	Src Phosphorylates Grb2-associated Binder 1 upon Hepatocyte Growth Factor Stimulation. Journal of Biological Chemistry, 2003, 278, 44075-44082.	3.4	35
27	Synergistic Effect of Focal Adhesion Kinase Overexpression and Hepatocyte Growth Factor Stimulation on Cell Transformation. Journal of Biological Chemistry, 2002, 277, 50373-50379.	3.4	25
28	Roles of Rho-associated Kinase and Myosin Light Chain Kinase in Morphological and Migratory Defects of Focal Adhesion Kinase-null Cells. Journal of Biological Chemistry, 2002, 277, 33857-33863.	3.4	138
29	Effect of calcium channel antagonist diltiazem and calcium ionophore A23187 on cyclosporine Aâ€induced apoptosis of renal tubular cells. FEBS Letters, 2002, 516, 191-196.	2.8	16
30	Role of α3β1 integrin in tubulogenesis of Madin-Darby canine kidney cells. Kidney International, 2001, 59, 1770-1778.	5.2	22
31	Sustained Activation of Extracellular Signal-regulated Kinase Stimulated by Hepatocyte Growth Factor Leads to Integrin α2 Expression That Is Involved in Cell Scattering. Journal of Biological Chemistry, 2001, 276, 21146-21152.	3.4	54
32	Involvement of Focal Adhesion Kinase in Hepatocyte Growth Factor-induced Scatter of Madin-Darby Canine Kidney Cells. Journal of Biological Chemistry, 2000, 275, 7474-7480.	3.4	74
33	Requirement of Phosphatidylinositol 3-Kinase in Focal Adhesion Kinase-promoted Cell Migration. Journal of Biological Chemistry, 1999, 274, 12361-12366.	3.4	247
34	Suppression of Ultraviolet Irradiation-induced Apoptosis by Overexpression of Focal Adhesion Kinase in Madin-Darby Canine Kidney Cells. Journal of Biological Chemistry, 1999, 274, 26901-26906.	3.4	101
35	Tyrosine Phosphorylation of Focal Adhesion Kinase Stimulated by Hepatocyte Growth Factor Leads to Mitogen-activated Protein Kinase Activation. Journal of Biological Chemistry, 1998, 273, 25777-25782.	3.4	79
36	Signal Transduction in Cell–Matrix Interactions. International Review of Cytology, 1996, 168, 81-121.	6.2	54

#	Article	IF	CITATIONS
37	Phosphorylation of Tyrosine 397 in Focal Adhesion Kinase Is Required for Binding Phosphatidylinositol 3-Kinase. Journal of Biological Chemistry, 1996, 271, 26329-26334.	3.4	478
38	Interaction of Focal Adhesion Kinase with Cytoskeletal Protein Talin. Journal of Biological Chemistry, 1995, 270, 16995-16999.	3.4	340