
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/331666/publications.pdf Version: 2024-02-01

HONG GUO

#	Article	IF	CITATIONS
1	Controlled assemble of hollow heterostructured g-C3N4@CeO2 with rich oxygen vacancies for enhanced photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2019, 243, 566-575.	10.8	287
2	Effective Adsorption and Removal of Phosphate from Aqueous Solutions and Eutrophic Water by Fe-based MOFs of MIL-101. Scientific Reports, 2017, 7, 3316.	1.6	190
3	Few‣ayer MoSe ₂ Nanosheets with Expanded (002) Planes Confined in Hollow Carbon Nanospheres for Ultrahighâ€Performance Naâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1707480.	7.8	181
4	Dual Active Site of the Azo and Carbonyl-Modified Covalent Organic Framework for High-Performance Li Storage. ACS Energy Letters, 2020, 5, 1022-1031.	8.8	156
5	Gold coating for a high performance Li4Ti5O12 nanorod aggregates anode in lithium-ion batteries. Journal of Power Sources, 2014, 245, 624-629.	4.0	127
6	General design of hollow porous CoFe ₂ O ₄ nanocubes from metal–organic frameworks with extraordinary lithium storage. Nanoscale, 2014, 6, 15168-15174.	2.8	122
7	Z-Scheme Au@Void@g-C ₃ N ₄ /SnS Yolk–Shell Heterostructures for Superior Photocatalytic CO ₂ Reduction under Visible Light. ACS Applied Materials & Interfaces, 2018, 10, 34123-34131.	4.0	120
8	N-doped C-encapsulated scale-like yolk-shell frame assembled by expanded planes few-layer MoSe2 for enhanced performance in sodium-ion batteries. Nano Energy, 2018, 51, 639-648.	8.2	104
9	Accurate hierarchical control of hollow crossed NiCo ₂ O ₄ nanocubes for superior lithium storage. Nanoscale, 2014, 6, 5491-5497.	2.8	95
10	Hollow NiO nanotubes synthesized by bio-templates as the high performance anode materials of lithium-ion batteries. Electrochimica Acta, 2013, 114, 42-47.	2.6	93
11	Dualâ€Activeâ€Center of Polyimide and Triazine Modified Atomicâ€Layer Covalent Organic Frameworks for Highâ€Performance Li Storage. Advanced Functional Materials, 2021, 31, 2101019.	7.8	72
12	Hollow nanotubular SiOx templated by cellulose fibers for lithium ion batteries. Electrochimica Acta, 2012, 74, 271-274.	2.6	67
13	Morphology-controlled synthesis of SnO2/C hollow core–shell nanoparticle aggregates with improved lithium storage. Journal of Materials Chemistry A, 2013, 1, 3652.	5.2	65
14	Controlled assemble of oxygen vacant CeO2@Bi2WO6 hollow magnetic microcapsule heterostructures for visible-light photocatalytic activity. Chemical Engineering Journal, 2017, 330, 1297-1305.	6.6	63
15	Hierarchical CoS2@C hollow microspheres constructed by nanosheets with superior lithium storage. Journal of Power Sources, 2015, 286, 159-165.	4.0	62
16	Preparation of FePO4 by liquid-phase method and modification on the surface of LiNi0.80Co0.15Al0.05O2 cathode material. Journal of Alloys and Compounds, 2018, 731, 428-436.	2.8	62
17	Robust hexagonal nut-shaped titanium(IV) MOF with porous structure for ultra-high performance lithium storage. Electrochimica Acta, 2019, 296, 746-754.	2.6	62
18	Sn ⁴⁺ self-doped hollow cubic SnS as an efficient visible-light photocatalyst for Cr(<scp>vi</scp>) reduction and detoxification of cyanide. Journal of Materials Chemistry A, 2017, 5, 6299-6309.	5.2	61

#	Article	IF	CITATIONS
19	Self-assembled hierarchical yolk–shell structured NiO@C from metal–organic frameworks with outstanding performance for lithium storage. Chemical Communications, 2014, 50, 9485-9488.	2.2	59
20	Understanding dual-vacancy heterojunction for boosting photocatalytic CO2 reduction with highly selective conversion to CH4. Applied Catalysis B: Environmental, 2022, 316, 121679.	10.8	59
21	Surface modification of hollow magnetic Fe3O4@NH2-MIL-101(Fe) derived from metal-organic frameworks for enhanced selective removal of phosphates from aqueous solution. Scientific Reports, 2016, 6, 30651.	1.6	57
22	Rich S vacant g-C3N4@CuIn5S8 hollow heterojunction for highly efficient selective photocatalytic CO2 reduction. Chemical Engineering Journal, 2021, 424, 130325.	6.6	53
23	Cooperative catalytic interface accelerates redox kinetics of sulfur species for high-performance Li-S batteries. Energy Storage Materials, 2021, 40, 139-149.	9.5	47
24	Designed hierarchical synthesis of ring-shaped Bi ₂ WO ₆ @CeO ₂ hybrid nanoparticle aggregates for photocatalytic detoxification of cyanide. Green Chemistry, 2014, 16, 2539-2545.	4.6	46
25	Designed hierarchical MnO ₂ microspheres assembled from nanofilms for removal of heavy metal ions. RSC Advances, 2014, 4, 14048-14054.	1.7	46
26	Hollow nanotubular SnO2 with improved lithium storage. Journal of Power Sources, 2012, 219, 280-284.	4.0	42
27	Rearrangement on surface structures by boride to enhanced cycle stability for LiNi0.80Co0.15Al0.05O2 cathode in lithium ion batteries. Journal of Energy Chemistry, 2020, 45, 110-118.	7.1	42
28	Morphology-controlled synthesis of cage-bell Pd@CeO2 structured nanoparticle aggregates as catalysts for the low-temperature oxidation of CO. Journal of Materials Chemistry A, 2013, 1, 7494.	5.2	41
29	Understanding Dualâ€Polar Group Functionalized COFs for Accelerating Liâ€Ion Transport and Dendriteâ€Free Deposition in Lithium Metal Anodes. Energy and Environmental Materials, 2023, 6, .	7.3	41
30	Hierarchical hollow Fe2O3@MIL-101(Fe)/C derived from metal-organic frameworks for superior sodium storage. Scientific Reports, 2016, 6, 25556.	1.6	40
31	Shape-controlled synthesis of Ag@TiO2 cage-bell hybrid structure with enhanced photocatalytic activity and superior lithium storage. Green Chemistry, 2013, 15, 2810.	4.6	39
32	Core–shell TiO2 microsphere with enhanced photocatalytic activity and improved lithium storage. Journal of Solid State Chemistry, 2013, 201, 137-143.	1.4	38
33	Recycling valuable cobalt from spent lithium ion batteries for controllably designing a novel sea-urchin-like cobalt nitride-graphene hybrid catalyst: Towards efficient overall water splitting. Journal of Energy Chemistry, 2021, 62, 440-450.	7.1	38
34	Enhanced ionic conductivity of a Na ₃ Zr ₂ Si ₂ PO ₁₂ solid electrolyte with Na ₂ SiO ₃ obtained by liquid phase sintering for solid-state Na ⁺ batteries. Nanoscale, 2022, 14, 823-832.	2.8	38
35	S vacant CuIn5S8 confined in a few-layer MoSe2 with interlayer-expanded hollow heterostructures boost photocatalytic CO2 reduction. Rare Metals, 2022, 41, 144-154.	3.6	37
36	Controlled synthesis of hollow octahedral ZnCo ₂ O ₄ nanocages assembled from ultrathin 2D nanosheets for enhanced lithium storage. Nanoscale, 2017, 9, 17174-17180.	2.8	36

#	Article	IF	CITATIONS
37	COFs-based electrolyte accelerates the Na+ diffusion and restrains dendrite growth in quasi-solid-state organic batteries. Nano Energy, 2022, 92, 106756.	8.2	36
38	Hierarchical synthesis of Mo–Sn oxide cage-bell hybrid structures with superior lithium storage. Chemical Communications, 2014, 50, 673-675.	2.2	35
39	Hydrophobic ionic liquids as novel extractants for gold(I) recovery from alkaline cyanide solutions. Journal of Chemical Technology and Biotechnology, 2015, 90, 1102-1109.	1.6	35
40	Li+ intercalcation pseudocapacitance in Sn-based metal-organic framework for high capacity and ultra-stable Li ion storage. Journal of Power Sources, 2019, 440, 227162.	4.0	35
41	Self-assembly formation of hollow Ni-Fe-O nanocage architectures by metal-organic frameworks with high-performance lithium storage. Scientific Reports, 2015, 5, 13310.	1.6	34
42	Self-assembled hierarchical hollow CuS@MoS 2 microcubes with superior lithium storage. Electrochimica Acta, 2017, 250, 376-383.	2.6	33
43	Facile synthesis of the porous FeCo@nitrogen-doped carbon nanosheets as bifunctional oxygen electrocatalysts. Electrochimica Acta, 2020, 335, 135647.	2.6	31
44	Extended π-conjugated N-containing heteroaromatic hexacarboxylate organic anode for high performance rechargeable batteries. Journal of Energy Chemistry, 2020, 51, 303-311.	7.1	28
45	Covalent organic frameworks for solid-state electrolytes of lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 7497-7516.	5.2	28
46	Understanding rich oxygen vacant hollow CeO2@MoSe2 heterojunction for accelerating photocatalytic CO2 reduction. Journal of Colloid and Interface Science, 2022, 611, 644-653.	5.0	27
47	Templateâ€Free Fabrication of Hollow NiO–Carbon Hybrid Nanoparticle Aggregates with Improved Lithium Storage. Particle and Particle Systems Characterization, 2014, 31, 374-381.	1.2	26
48	A Hydrothermal Synthesis of Fe3O4@C Hybrid Nanoparticle and Magnetic Adsorptive Performance to Remove Heavy Metal Ions in Aqueous Solution. Nanoscale Research Letters, 2018, 13, 178.	3.1	25
49	A photochromic zinc-based coordination polymer for a Li-ion battery anode with high capacity and stable cycling stability. Dalton Transactions, 2018, 47, 13222-13228.	1.6	24
50	Molecular engineering regulation redoxâ€dualâ€activeâ€center covalent organic frameworksâ€based anode for highâ€performance Li storage. EcoMat, 2022, 4, .	6.8	24
51	COFâ€based single Li ⁺ solid electrolyte accelerates the ion diffusion and restrains dendrite growth in quasiâ€solidâ€state organic batteries. , 2023, 5, .		24
52	Controlled assembly of Ag nanoparticles on the surface of phosphate pillar [6]arene functionalized single-walled carbon nanotube for enhanced catalysis and sensing performance. Electrochimica Acta, 2019, 318, 711-719.	2.6	23
53	An inorganic–organic hybrid supramolecular framework as a high-performance anode for lithium-ion batteries. Dalton Transactions, 2018, 47, 5166-5170.	1.6	22
54	Boosting rate performance of LiNi0.8Co0.15Al0.05O2 cathode by simply mixing lithium iron phosphate. Journal of Alloys and Compounds, 2020, 827, 154296.	2.8	22

#	Article	lF	CITATIONS
55	Red phosphorus confined in N-doped multi-cavity mesoporous carbon for ultrahigh-performance sodium-ion batteries. Journal of Power Sources, 2020, 450, 227696.	4.0	22
56	An asymmetric bilayer polymer-ceramic solid electrolyte for high-performance sodium metal batteries. Journal of Energy Chemistry, 2022, 74, 18-25.	7.1	21
57	2D SnO2 nanorod networks templated by garlic skins for lithium ion batteries. Materials Research Bulletin, 2013, 48, 1518-1522.	2.7	17
58	Morphology-controlled synthesis of Ti3+ self-doped yolk–shell structure titanium oxide with superior photocatalytic activity under visible light. Journal of Solid State Chemistry, 2014, 213, 98-103.	1.4	14
59	A lanthanide-based coordination polymer as lithium ion battery anode with high cyclic stability. Materials Letters, 2019, 238, 171-174.	1.3	14
60	Morphology-controlled construction of hierarchical hollow hybrid SnO2@TiO2 nanocapsules with outstanding lithium storage. Scientific Reports, 2015, 5, 15252.	1.6	13
61	Hierarchical hollow TiO ₂ @CeO ₂ nanocube heterostructures for photocatalytic detoxification of cyanide. RSC Advances, 2015, 5, 11733-11737.	1.7	13
62	Structure and morphology evolution in solid-phase synthesis lithium ion battery LiNi0.80Co0.15Al0.05O2 cathode materials with different micro-nano sizes of raw materials. Ceramics International, 2018, 44, 9294-9302.	2.3	13
63	Red phosphorus confined in hierarchical hollow surface-modified Co ₉ S ₈ for enhanced sodium storage. Sustainable Energy and Fuels, 2020, 4, 2208-2219.	2.5	12
64	Boosting the water splitting activity of cobalt nitride through morphological design: a comparison of the influence of structure on the hydrogen and oxygen evolution reactions. Sustainable Energy and Fuels, 2021, 5, 3632-3639.	2.5	12
65	Improved and stable triazine-based covalent organic framework for lithium storage. Applied Surface Science, 2022, 594, 153481.	3.1	12
66	Fabrication of porous Ni/CoFe2O4@C composite for pseudocapacitive lithium storage. Journal of Alloys and Compounds, 2021, 854, 157177.	2.8	11
67	Control loading Au nanoparticles on the surface of hydroxyl pillar[5]arene functionalized single-walled carbon nanotubes and its application in catalysis and sensing. Sustainable Energy and Fuels, 2019, 3, 2312-2320.	2.5	10
68	MOFs-derived Bi2O3@C with rich oxygen vacancies through rapid thermal annealing technology for photodegradation of tetracycline hydrochloride. Applied Surface Science, 2022, 586, 152813.	3.1	10
69	Accurate hierarchical control of hollow nanocube Pd/CeO2 catalysts for the low-temperature oxidation of CO. Catalysis Communications, 2015, 64, 62-65.	1.6	3
70	Ni ₃ FeN functionalized carbon nanofibers boosting polysulfide conversion for Li–S chemistry. RSC Advances, 2022, 12, 6930-6937.	1.7	1
71	Electrical Activation of Nano/Micro-size Crystallite Carbon. Energy Procedia, 2012, 14, 101-107.	1.8	0