List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3316636/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hemochromatosis classification: update and recommendations by the BIOIRON Society. Blood, 2022, 139, 3018-3029.	1.4	50
2	EASL Clinical Practice Guidelines on haemochromatosis. Journal of Hepatology, 2022, 77, 479-502.	3.7	49
3	The EHA Research Roadmap: Anemias. HemaSphere, 2021, 5, e607.	2.7	7
4	Loss of erythroblasts in acute myeloid leukemia causes iron redistribution with clinical implications. Blood Advances, 2021, 5, 3102-3112.	5.2	5
5	Iron Related Biomarkers Predict Disease Severity in a Cohort of Portuguese Adult Patients during COVID-19 Acute Infection. Viruses, 2021, 13, 2482.	3.3	11
6	Atherosclerosis is aggravated by iron overload and ameliorated by dietary and pharmacological iron restriction. European Heart Journal, 2020, 41, 2681-2695.	2.2	162
7	Chromosome 6p SNP microhaplotypes and IgG3 levels in hemochromatosis probands with HFE p.C282Y homozygosity. Blood Cells, Molecules, and Diseases, 2020, 85, 102461.	1.4	2
8	Iron Administration, Infection, and Anemia Management in CKD: Untangling the Effects of Intravenous Iron Therapy on Immunity and Infection Risk. Kidney Medicine, 2020, 2, 341-353.	2.0	24
9	HFE Related Hemochromatosis: Uncovering the Inextricable Link between Iron Homeostasis and the Immunological System. Pharmaceuticals, 2019, 12, 122.	3.8	8
10	Intracellular iron uptake is favored in <i>Hfe</i> â€KO mouse primary chondrocytes mimicking an osteoarthritisâ€related phenotype. BioFactors, 2019, 45, 583-597.	5.4	24
11	Nrf2 controls iron homoeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin. Nature Metabolism, 2019, 1, 519-531.	11.9	88
12	Therapeutic recommendations in HFE hemochromatosis for p.Cys282Tyr (C282Y/C282Y) homozygous genotype. Hepatology International, 2018, 12, 83-86.	4.2	41
13	Optimizing the management of hereditary haemochromatosis: the value of <scp>MRI</scp> R2* quantification to predict and monitor body iron stores. British Journal of Haematology, 2018, 183, 491-493.	2.5	10
14	Iron-enriched diet contributes to early onset of osteoporotic phenotype in a mouse model of hereditary hemochromatosis. PLoS ONE, 2018, 13, e0207441.	2.5	20
15	Accurate simultaneous quantification of liver steatosis and iron overload in diffuse liver diseases with MRI. Abdominal Radiology, 2017, 42, 1434-1443.	2.1	43
16	Genetic disruption of NRF2 promotes the development of necroinflammation and liver fibrosis in a mouse model of HFE-hereditary hemochromatosis. Redox Biology, 2017, 11, 157-169.	9.0	35
17	Hepcidin is regulated by promoter-associated histone acetylation and HDAC3. Nature Communications, 2017, 8, 403.	12.8	45
18	HFE Variants and the Expression of Iron-Related Proteins in Breast Cancer-Associated Lymphocytes and Macrophages, Cancer Microenvironment, 2016, 9, 85-91.	3.1	3

#	Article	IF	CITATIONS
19	Local iron homeostasis in the breast ductal carcinoma microenvironment. BMC Cancer, 2016, 16, 187.	2.6	68
20	EMQN best practice guidelines for the molecular genetic diagnosis of hereditary hemochromatosis (HH). European Journal of Human Genetics, 2016, 24, 479-495.	2.8	73
21	Lymphocyte Gene Expression Signatures from Patients and Mouse Models of Hereditary Hemochromatosis Reveal a Function of HFE as a Negative Regulator of CD8+ T-Lymphocyte Activation and Differentiation In Vivo. PLoS ONE, 2015, 10, e0124246.	2.5	26
22	Polyacrylic acid coated and non-coated iron oxide nanoparticles are not genotoxic to human T lymphocytes. Toxicology Letters, 2015, 234, 67-73.	0.8	27
23	Impact of a Dengue Outbreak Experience in the Preventive Perceptions of the Community from a Temperate Region: Madeira Island, Portugal. PLoS Neglected Tropical Diseases, 2015, 9, e0003395.	3.0	6
24	Polyacrylic acid-coated and non-coated iron oxide nanoparticles induce cytokine activation in human blood cells through TAK1, p38 MAPK and JNK pro-inflammatory pathways. Archives of Toxicology, 2015, 89, 1759-1769.	4.2	23
25	Physiological implications of NTBI uptake by T lymphocytes. Frontiers in Pharmacology, 2014, 5, 24.	3.5	36
26	Insufficient Referral for Genetic Counseling in the Management of Hereditary Haemochromatosis in Portugal: A Study of Perceptions of Health Professionals Requesting <i>HFE</i> Genotyping. Journal of Genetic Counseling, 2014, 23, 770-777.	1.6	4
27	Iron homeostasis in breast cancer. Cancer Letters, 2014, 347, 1-14.	7.2	89
28	Strengthening the perception-assessment tools for dengue prevention: a cross-sectional survey in a temperate region (Madeira, Portugal). BMC Public Health, 2014, 14, 39.	2.9	22
29	Inhibition of LOX by flavonoids: a structure–activity relationship study. European Journal of Medicinal Chemistry, 2014, 72, 137-145.	5.5	87
30	Interaction of polyacrylic acid coated and non-coated iron oxide nanoparticles with human neutrophils. Toxicology Letters, 2014, 225, 57-65.	0.8	55
31	Genetic and biochemical markers in patients with Alzheimer's disease support a concerted systemic iron homeostasis dysregulation. Neurobiology of Aging, 2014, 35, 777-785.	3.1	68
32	The importance of the general practitioner as an information source for patients with hereditary haemochromatosis. Patient Education and Counseling, 2014, 96, 86-92.	2.2	11
33	Modulation of human neutrophils' oxidative burst by flavonoids. European Journal of Medicinal Chemistry, 2013, 67, 280-292.	5.5	48
34	A novel mutation in the <scp>CUB</scp> sequence of matriptaseâ€2 (<i><scp>TMPRSS</scp>6</i>) is implicated in ironâ€resistant iron deficiency anaemia – response to <scp>J</scp> aspers <i>etÂal</i> . British Journal of Haematology, 2013, 160, 566-567.	2.5	1
35	Acetaminophen prevents oxidative burst and delays apoptosis in human neutrophils. Toxicology Letters, 2013, 219, 170-177.	0.8	17
36	Protective effect of an ERAP1 haplotype in ankylosing spondylitis: investigating non-MHC genes in HLA-B27-positive individuals. Rheumatology, 2013, 52, 2168-2176.	1.9	34

#	Article	IF	CITATIONS
37	Non-Transferrin-Bound Iron (NTBI) Uptake by T Lymphocytes: Evidence for the Selective Acquisition of Oligomeric Ferric Citrate Species. PLoS ONE, 2013, 8, e79870.	2.5	42
38	Effects of Highly Conserved Major Histocompatibility Complex (MHC) Extended Haplotypes on Iron and Low CD8+ T Lymphocyte Phenotypes in HFE C282Y Homozygous Hemochromatosis Patients from Three Geographically Distant Areas. PLoS ONE, 2013, 8, e79990.	2.5	15
39	Two novel mutations in the <i>tmprss6</i> gene associated with ironâ€refractory ironâ€deficiency anaemia (irida) and partial expression in the heterozygous form. British Journal of Haematology, 2012, 158, 668-672.	2.5	24
40	Trihydroxyflavones with antioxidant and antiâ€inflammatory efficacy. BioFactors, 2012, 38, 378-386.	5.4	23
41	Iron and the Immune System. , 2012, , 233-248.		1
42	Nickel induces oxidative burst, NF-κB activation and interleukin-8 production in human neutrophils. Journal of Biological Inorganic Chemistry, 2010, 15, 1275-1283.	2.6	39
43	Zinc activates neutrophils' oxidative burst. BioMetals, 2010, 23, 31-41.	4.1	20
44	Metal-induced oxidative burst in isolated human neutrophils. Microchemical Journal, 2010, 96, 167-171.	4.5	6
45	Hepcidin messenger RNA expression in human lymphocytes. Immunology, 2010, 130, 217-230.	4.4	59
46	Low numbers of CD8+ T lymphocytes in hereditary haemochromatosis are explained by a decrease of the most mature CD8+ effector memory T cells. Clinical and Experimental Immunology, 2010, 159, 363-371.	2.6	23
47	Hemochromatosis and pregnancy: iron stores in the Hfeâ^'/â^' mouse are not reduced by multiple pregnancies. American Journal of Physiology - Renal Physiology, 2010, 298, G525-G529.	3.4	7
48	Optimization of experimental settings for the analysis of human neutrophils oxidative burst in vitro. Talanta, 2009, 78, 1476-1483.	5.5	33
49	Increased capacity of lymphocytes from hereditary hemochromatosis patients homozygous for the C282Y HFE mutation to respond to the genotoxic effect of diepoxybutane. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2009, 673, 37-42.	1.7	4
50	CAT53 and HFE alleles in Alzheimer's disease: A putative protective role of the C282Y HFE mutation. Neuroscience Letters, 2009, 457, 129-132.	2.1	15
51	Isolation and activation of human neutrophils in vitro. The importance of the anticoagulant used during blood collection. Clinical Biochemistry, 2008, 41, 570-575.	1.9	101
52	A new 500 kb haplotype associated with high CD8+ T-lymphocyte numbers predicts a less severe expression of hereditary hemochromatosis. BMC Medical Genetics, 2008, 9, 97.	2.1	21
53	Protective role of calreticulin in HFE hemochromatosis. Free Radical Biology and Medicine, 2008, 44, 99-108.	2.9	17
54	Low serum levels of prohepcidin, but not hepcidin-25, are related to anemia in familial amyloidosis TTR V30M. Blood Cells, Molecules, and Diseases, 2008, 41, 175-178.	1.4	6

#	Article	IF	CITATIONS
55	Long-term treatment of anemia with recombinant human erythropoietin in familial amyloidosis TTR V30M. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2008, 15, 205-209.	3.0	8
56	Low Erythropoietin Production in Familial Amyloidosis TTR V30M Is Not Related with Renal Congophilic Amyloid Deposition. Nephron Clinical Practice, 2008, 109, c95-c99.	2.3	6
57	Erythropoietin mediates hepcidin expression in hepatocytes through EPOR signaling and regulation of C/EBPα. Blood, 2008, 111, 5727-5733.	1.4	212
58	A direct effect of erythropoietin on hepcidin expression involving EPOR signaling. FASEB Journal, 2008, 22, 1191.9.	0.5	0
59	Protective role of calreticulin in HFE hemochromatosis. FASEB Journal, 2008, 22, 758.37.	0.5	0
60	Liver transplantation and anemia in familial amyloidosis ATTR V30M. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2007, 14, 33-37.	3.0	8
61	A putative gene located at the MHC class I region around the D6S105 marker contributes to the setting of CD8+ T-lymphocyte numbers in humans. International Journal of Immunogenetics, 2007, 34, 359-367.	1.8	7
62	Iron overload and immunity. World Journal of Gastroenterology, 2007, 13, 4707.	3.3	114
63	The CD8+ T-lymphocyte profile as a modifier of iron overload in HFE hemochromatosis: An update of clinical and immunological data from 70 C282Y homozygous subjects. Blood Cells, Molecules, and Diseases, 2006, 37, 33-39.	1.4	32
64	A study of 82 extended HLA haplotypes in HFE-C282Y homozygous hemochromatosis subjects: relationship to the genetic control of CD8+ T-lymphocyte numbers and severity of iron overload. BMC Medical Genetics, 2006, 7, 16.	2.1	32
65	Comparative study between Hfe-/- and \hat{l}^2 2m-/- mice: progression with age of iron status and liver pathology. International Journal of Experimental Pathology, 2006, 87, 317-324.	1.3	19
66	HFE mutations in the pathobiology of hemophilic arthropathy. Blood, 2005, 105, 3381-3382.	1.4	11
67	A Portuguese patient homozygous for the -25G>A mutation of the HAMP promoter shows evidence of steady-state transcription but fails to up-regulate hepcidin levels by iron. Blood, 2005, 106, 2922-2923.	1.4	30
68	Low serum transferrin levels in HFE C282Y homozygous subjects are associated with low CD8+ T lymphocyte numbers. Blood Cells, Molecules, and Diseases, 2005, 35, 319-325.	1.4	11
69	Involvement of the Major Histocompatibility Complex region in the genetic regulation of circulating CD8+ T-cell numbers in humans. Tissue Antigens, 2004, 64, 25-34.	1.0	17
70	Growth hormone (GH)-induced reconstitution of CD8+ CD28+ T lymphocytes in a rare case of severe lymphopenia associated with Juvenile Haemochromatosis and Turner's syndrome. Clinical Endocrinology, 2004, 61, 437-440.	2.4	3
71	Kidney and anemia in familial amyloidosis type I. Kidney International, 2004, 66, 2004-2009.	5.2	23
72	Red blood cells upregulate cytoprotective proteins and the labile iron pool in dividing human T cells despite a reduction in oxidative stress. Free Radical Biology and Medicine, 2003, 35, 1404-1416.	2.9	18

#	Article	IF	CITATIONS
73	Red blood cells promote survival and cell cycle progression of human peripheral blood T cells independently of CD58/LFA-3 and heme compounds. Cellular Immunology, 2003, 224, 17-28.	3.0	31
74	Transferrin receptor 2 (TfR2) and HFE mutational analysis in non-C282Y iron overload: identification of a novel TfR2 mutation. Blood, 2002, 100, 1075-1077.	1.4	97
75	Co-selection of the H63D mutation and the HLA-A29 allele: a new paradigm of linkage disequilibrium?. Immunogenetics, 2002, 53, 1002-1008.	2.4	30
76	T-Cell receptor repertoire in hereditary hemochromatosis: a study of 32 hemochromatosis patients and 274 healthy subjects. Human Immunology, 2001, 62, 488-499.	2.4	27
77	Red blood cells inhibit activation-induced cell death and oxidative stress in human peripheral blood T lymphocytes. Blood, 2001, 97, 3152-3160.	1.4	45
78	Human red blood cells have an enhancing effect on the relative expansion of CD8 ⁺ ÂT lymphocytes <i>in vitro</i> . Cell Proliferation, 2001, 34, 359-367.	5.3	17
79	Comparative study of the two more frequent HFE mutations (C282Y and H63D): significant different allelic frequencies between the North and South of Portugal. European Journal of Human Genetics, 2001, 9, 843-848.	2.8	37
80	Clinical and genetic heterogeneity in hereditary haemochromatosis: association between lymphocyte counts and expression of iron overload. European Journal of Haematology, 2001, 67, 110-118.	2.2	24
81	Expansions of CD8CD28- and CD8TcRVbeta5.2 T Cells in Peripheral Blood of Heavy Alcohol Drinkers. Alcoholism: Clinical and Experimental Research, 2000, 24, 519-527.	2.4	15
82	T-lymphocyte expression and function in hemochromatosis. , 2000, , 396-408.		7
83	Variation of hemochromatosis prevalence and genotype in national groups. , 2000, , 51-62.		17
84	Calreticulin Is Expressed on the Cell Surface of Activated Human Peripheral Blood T Lymphocytes in Association with Major Histocompatibility Complex Class I Molecules. Journal of Biological Chemistry, 1999, 274, 16917-16922.	3.4	130
85	T Cell Numbers Relate to Bone Involvement in Gaucher Disease. Blood Cells, Molecules, and Diseases, 1999, 25, 130-138.	1.4	47
86	Major histocompatibility complex class I associations in iron overload: evidence for a new link between the HFE H63D mutation, HLA-A29, and non-classical forms of hemochromatosis. Immunogenetics, 1998, 47, 404-410.	2.4	58
87	Prevalence of the C282Y and H63D mutations in the HFE gene in patients with hereditary haemochromatosis and in control subjects from Northern Germany. British Journal of Haematology, 1998, 103, 842-845.	2.5	75
88	The immunological system in hemochromatosis. Journal of Hepatology, 1998, 28, 1-7.	3.7	131
89	Iron overload in β2-microglobulin-deficient mice. Immunology Letters, 1994, 39, 105-111.	2.5	184
90	Decreased CD8-p561ck Activity in Peripheral Blood T-Lymphocytes from Patients with Hereditary Haemochromatosis. Scandinavian Journal of Immunology, 1994, 39, 426-432.	2.7	50

#	Article	IF	CITATIONS
91	Haemochromatosis as a window into the study of the immunological system: A novel correlation between CD8 ⁺ lymphocytes and iron overload. European Journal of Haematology, 1994, 52, 283-290.	2.2	61
92	Hereditary Hemochromatosis (HH) in the North of Portugal Annals of the New York Academy of Sciences, 1988, 526, 349-351.	3.8	2
93	Hereditary Hemochromatosis (HH) in the North of Portugal Annals of the New York Academy of Sciences, 1988, 526, 352-354.	3.8	0