Mary Lou King

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3316618/publications.pdf

Version: 2024-02-01

567281 526287 1,421 27 15 27 citations h-index g-index papers 28 28 28 1096 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Role of Maternal VegT in Establishing the Primary Germ Layers in Xenopus Embryos. Cell, 1998, 94, 515-524.	28.9	433
2	Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biology of the Cell, 2005, 97, 19-33.	2.0	254
3	Polarizing genetic information in the egg: RNA localization in the frog oocyte. BioEssays, 1999, 21, 546-557.	2.5	102
4	DEADSouth is a germ plasm specific DEAD-box RNA helicase in Xenopus related to eIF4A. Mechanisms of Development, 2000, 95, 291-295.	1.7	78
5	<i>Xenopus</i> Nanos1 is required to prevent endoderm gene expression and apoptosis in primordial germ cells. Development (Cambridge), 2012, 139, 1476-1486.	2.5	73
6	Repression of zygotic gene expression in the <i>Xenopus </i> germline. Development (Cambridge), 2010, 137, 651-660.	2. 5	64
7	BAP1 regulates epigenetic switch from pluripotency to differentiation in developmental lineages giving rise to BAP1-mutant cancers. Science Advances, 2019, 5, eaax1738.	10.3	57
8	Nanos1 functions as a translational repressor in the Xenopus germline. Mechanisms of Development, 2011, 128, 153-163.	1.7	53
9	Repressive translational control in germ cells. Molecular Reproduction and Development, 2013, 80, 665-676.	2.0	39
10	Maternal Dead-End1 is required for vegetal cortical microtubule assembly during <i>Xenopus</i> axis specification. Development (Cambridge), 2013, 140, 2334-2344.	2.5	35
11	<i>Xenopus</i> germline <i>nanos1</i> i>is translationally repressed by a novel structure-based mechanism. Development (Cambridge), 2011, 138, 589-598.	2.5	27
12	Hermes (Rbpms) is a Critical Component of RNP Complexes that Sequester Germline RNAs during Oogenesis. Journal of Developmental Biology, 2016, 4, 2.	1.7	26
13	Maternal dead-end 1 promotes translation of nanos1 through binding the eIF3 complex. Development (Cambridge), 2017, 144, 3755-3765.	2.5	25
14	The Xenopus Maternal-to-Zygotic Transition from the Perspective of the Germline. Current Topics in Developmental Biology, 2015, 113, 271-303.	2.2	22
15	High-throughput analysis reveals novel maternal germline RNAs crucial for primordial germ cell preservation and proper migration. Development (Cambridge), 2017, 144, 292-304.	2.5	19
16	Molecular basis for cytoplasmic localization. Genesis, 1996, 19, 183-189.	2.1	17
17	Isolation of Xenopus Oocytes. Cold Spring Harbor Protocols, 2018, 2018, pdb.prot095851.	0.3	15
18	Combined functions of two RRMs in Deadâ€end1 mimic helicase activity to promote <i>nanos1</i> translation in the germline. Molecular Reproduction and Development, 2018, 85, 896-908.	2.0	14

#	Article	IF	Citations
19	Mechanisms of Vertebrate Germ Cell Determination. Advances in Experimental Medicine and Biology, 2017, 953, 383-440.	1.6	13
20	The <i>Xenopus</i> primordial germ cell transcriptome identifies <i>sox7</i> : a novel role in early PGC development. Development (Cambridge), 2018, 145, .	2.5	11
21	Microinjection of <i>Xenopus</i> Oocytes. Cold Spring Harbor Protocols, 2018, 2018, pdb.prot096974.	0.3	10
22	Primordial Germ Cell Isolation from Xenopus laevis Embryos. Methods in Molecular Biology, 2017, 1463, 115-124.	0.9	7
23	Novel functions of the ubiquitin-independent proteasome system in regulating <i>Xenopus </i> germline development. Development (Cambridge), 2019, 146, .	2.5	7
24	Biochemical characterization of a cellular structure retaining vegetally localized RNAs inXenopus late stage oocytes. Journal of Cellular Biochemistry, 2001, 80, 560-570.	2.6	5
25	Cell surface proteins of wholeXenopus embryos identified by radioiodination. Roux's Archives of Developmental Biology, 1989, 198, 141-147.	1.2	4
26	Maternal messages to live by: a personal historical perspective. Genesis, 2017, 55, e23007.	1.6	3
27	Methods for Isolating the Balbiani Body/Germplasm from Xenopus laevis Oocytes. Methods in Molecular Biology, 2019, 1920, 265-275.	0.9	1