
Jiong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3316373/publications.pdf Version: 2024-02-01

ΙΟΝΟ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Uncertainty-guided graph attention network for parapneumonic effusion diagnosis. Medical Image Analysis, 2022, 75, 102217.	7.0	13
2	Multi-Scale Pathological Fluid Segmentation in OCT With a Novel Curvature Loss in Convolutional Neural Network. IEEE Transactions on Medical Imaging, 2022, 41, 1547-1559.	5.4	20
3	Structure and Illumination Constrained GAN for Medical Image Enhancement. IEEE Transactions on Medical Imaging, 2021, 40, 3955-3967.	5.4	60
4	A Hybrid DCNN-SVM Model for Classifying Neonatal Sleep and Wake States Based on Facial Expressions in Video. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 1441-1449.	3.9	22
5	Cross-Domain Depth Estimation Network for 3D Vessel Reconstruction in OCT Angiography. Lecture Notes in Computer Science, 2021, , 13-23.	1.0	3
6	ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New Model. IEEE Transactions on Medical Imaging, 2021, 40, 928-939.	5.4	137
7	3D Vessel Reconstruction In Oct-Angiography Via Depth Map Estimation. , 2021, , .		5
8	Angle-closure assessment in anterior segment OCT images via deep learning. Medical Image Analysis, 2021, 69, 101956.	7.0	28
9	Past, present and future role of retinal imaging in neurodegenerative disease. Progress in Retinal and Eye Research, 2021, 83, 100938.	7.3	60
10	Association of Tau Pathology With Clinical Symptoms in the Subfields of Hippocampal Formation. Frontiers in Aging Neuroscience, 2021, 13, 672077.	1.7	4
11	Outer Retinal Layer Thickness Changes in White Matter Hyperintensity and Parkinson's Disease. Frontiers in Neuroscience, 2021, 15, 741651.	1.4	4
12	Automated Segmentation of Trigeminal Nerve and Cerebrovasculature in MR-Angiography Images by Deep Learning. Frontiers in Neuroscience, 2021, 15, 744967.	1.4	5
13	Automated Deformation-Based Analysis of 3D Optical Coherence Tomography in Diabetic Retinopathy. IEEE Transactions on Medical Imaging, 2020, 39, 236-245.	5.4	14
14	An artificial intelligence-based deep learning algorithm for the diagnosis of diabetic neuropathy using corneal confocal microscopy: a development and validation study. Diabetologia, 2020, 63, 419-430.	2.9	88
15	3D Shape Modeling and Analysis of Retinal Microvasculature in OCT-Angiography Images. IEEE Transactions on Medical Imaging, 2020, 39, 1335-1346.	5.4	45
16	Automatic Tortuosity Estimation of Nerve Fibers and Retinal Vessels in Ophthalmic Images. Applied Sciences (Switzerland), 2020, 10, 4788.	1.3	1
17	3D Retinal Vessel Density Mapping With OCT-Angiography. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3466-3479.	3.9	13
18	Behavior and amyloid profiles modify the association of tauopathy/neurodegeneration and cognitive decline in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e040049.	0.4	0

JIONG ZHANG

#	Article	IF	CITATIONS
19	Type 2 diabetes and HbA1c are independently associated with wider retinal arterioles: the Maastricht study. Diabetologia, 2020, 63, 1408-1417.	2.9	18
20	Automatic corneal nerve fiber segmentation and geometric biomarker quantification. European Physical Journal Plus, 2020, 135, 1.	1.2	10
21	Automated Tortuosity Analysis of Nerve Fibers in Corneal Confocal Microscopy. IEEE Transactions on Medical Imaging, 2020, 39, 2725-2737.	5.4	29
22	Corrections to "Automated Tortuosity Analysis of Nerve Fibers in Corneal Confocal Microscopy― IEEE Transactions on Medical Imaging, 2020, 39, 3758-3758.	5.4	1
23	A fully automated pipeline of extracting biomarkers to quantify vascular changes in retina-related diseases. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2019, 7, 616-631.	1.3	2
24	Vascular biomarkers for diabetes and diabetic retinopathy screening. , 2019, , 319-352.		1
25	Minimal Paths for Tubular Structure Segmentation With Coherence Penalty and Adaptive Anisotropy. IEEE Transactions on Image Processing, 2019, 28, 1271-1284.	6.0	25
26	3D Surface-Based Geometric and Topological Quantification of Retinal Microvasculature in OCT-Angiography via Reeb Analysis. Lecture Notes in Computer Science, 2019, , 57-65.	1.0	3
27	Reconnection of Interrupted Curvilinear Structures via Cortically Inspired Completion for Ophthalmologic Images. IEEE Transactions on Biomedical Engineering, 2018, 65, 1151-1165.	2.5	10
28	Retinal Microaneurysms Detection Using Local Convergence Index Features. IEEE Transactions on Image Processing, 2018, 27, 3300-3315.	6.0	79
29	Multi-modal and multi-vendor retina image registration. Biomedical Optics Express, 2018, 9, 410.	1.5	36
30	Analysis of Retinal Vascular Biomarkers for Early Detection of Diabetes. Lecture Notes in Computational Vision and Biomechanics, 2018, , 811-817.	0.5	2
31	Validation Study on Retinal Vessel Caliber Measurement Technique. Lecture Notes in Computational Vision and Biomechanics, 2018, , 818-826.	O.5	0
32	Retinal vessel delineation using a brain-inspired wavelet transform and random forest. Pattern Recognition, 2017, 69, 107-123.	5.1	99
33	Retrieving challenging vessel connections in retinal images by line co-occurrence statistics. Biological Cybernetics, 2017, 111, 237-247.	0.6	5
34	Retinal health information and notification system (RHINO). , 2017, , .		4
35	A Comparative Study Towards theÂEstablishment of an Automatic Retinal Vessel Width Measurement Technique. Lecture Notes in Computer Science, 2017, , 227-234.	1.0	6
36	Reliability of Using Retinal Vascular Fractal Dimension as a Biomarker in the Diabetic Retinopathy Detection. Journal of Ophthalmology, 2016, 2016, 1-13.	0.6	52

JIONG ZHANG

#	Article	IF	CITATIONS
37	Robust Retinal Vessel Segmentation via Locally Adaptive Derivative Frames in Orientation Scores. IEEE Transactions on Medical Imaging, 2016, 35, 2631-2644.	5.4	300
38	Numerical Approaches for Linear Left-invariant Diffusions on <i>SE</i> (2), their Comparison to Exact Solutions, and their Applications in Retinal Imaging. Numerical Mathematics, 2016, 9, 1-50.	0.6	18
39	Brain-inspired algorithms for retinal image analysis. Machine Vision and Applications, 2016, 27, 1117-1135.	1.7	22
40	Automatic Optic Disc and Fovea Detection in Retinal Images Using Super-Elliptical Convergence Index Filters. Lecture Notes in Computer Science, 2016, , 697-706.	1.0	22
41	Biologically-Inspired Supervised Vasculature Segmentation in SLO Retinal Fundus Images. Lecture Notes in Computer Science, 2015, , 325-334.	1.0	36
42	Robust and Fast Vessel Segmentation via Gaussian Derivatives in Orientation Scores. Lecture Notes in Computer Science, 2015, , 537-547.	1.0	18
43	Stability Analysis of Fractal Dimension in Retinal Vasculature. , 0, , .		10
44	Curvature Based Biomarkers for Diabetic Retinopathy via Exponential Curve Fits in SE(2). , 0, , .		18
45	Infrastructure for Retinal Image Analysis. , 0, , .		3
46	Geometric Connectivity Analysis Based on Edge Co-Occurrences in Retinal Images. , 0, , .		0
47	Bridging Disconnected Curvilinear Structures via Numerical Evolutions of Completion Process in Ophthalmologic Images. , 0, , .		0
48	Automatic choroid layer segmentation in OCT images via context efficient adaptive network. Applied Intelligence, 0, , .	3.3	2