Simone Schürle-Finke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/331604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering Cellâ€Based Systems for Smart Cancer Therapy. Advanced Intelligent Systems, 2022, 4, 2100134.	6.1	14
2	Towards Artefact-Free Bio-Impedance Measurements: Evaluation, Identification and Suppression of Artefacts at Multiple Frequencies. IEEE Sensors Journal, 2022, 22, 589-600.	4.7	2
3	Engineering Responsive Ultrasound Contrast Agents Through Crosslinked Networks on Lipidâ€ 5 helled Microbubbles. Small, 2022, 18, e2107143.	10.0	4
4	Mixed Reality for an Enhanced Laboratory Course on Microfluidics. Journal of Chemical Education, 2022, 99, 1272-1279.	2.3	6
5	The local soft tissue status and the prediction of local complications following fractures of the ankle region. Injury, 2022, 53, 1789-1795.	1.7	7
6	Magnetic Micro- and Nanoagents for Monitoring Enzymatic Activity In Vivo. Annual Review of Control, Robotics, and Autonomous Systems, 2022, 5, 311-333.	11.8	2
7	Assessment of alternative techniques to quantify the effect of injury on soft tissue in closed ankle and pilon fractures. PLoS ONE, 2022, 17, e0268359.	2.5	5
8	3D magnetically controlled spatiotemporal probing and actuation of collagen networks from a single cell perspective. Lab on A Chip, 2021, 21, 3850-3862.	6.0	9
9	Magnetospirillum magneticum as a Living Iron Chelator Induces TfR1 Upregulation and Decreases Cell Viability in Cancer Cells. International Journal of Molecular Sciences, 2021, 22, 498.	4.1	4
10	The Tumor Proteolytic Landscape: A Challenging Frontier in Cancer Diagnosis and Therapy. International Journal of Molecular Sciences, 2021, 22, 2514.	4.1	35
11	Capillary Microfluidics for Monitoring Medication Adherence. Angewandte Chemie - International Edition, 2021, 60, 17784-17796.	13.8	8
12	Facile Manufacturing Route for Magnetoâ€Responsive Soft Actuators. Advanced Intelligent Systems, 2021, 3, 2000283.	6.1	14
13	ImpediSense:A long lasting wireless wearable bio-impedance sensor node. Sustainable Computing: Informatics and Systems, 2021, 30, 100556.	2.2	5
14	Facile Manufacturing Route for Magnetoâ€Responsive Soft Actuators. Advanced Intelligent Systems, 2021, 3, 2170061.	6.1	2
15	Genetic Encoding of Targeted Magnetic Resonance Imaging Contrast Agents for Tumor Imaging. ACS Synthetic Biology, 2020, 9, 392-401.	3.8	19
16	Celluloseâ€Based Microparticles for Magnetically Controlled Optical Modulation and Sensing. Small, 2020, 16, 1904251.	10.0	9
17	Wireless, Artefact Aware Impedance Sensor Node for Continuous Bio-Impedance Monitoring. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14, 1122-1134.	4.0	8
18	Living, Selfâ€Replicating Ferrofluids for Fluidic Transport. Advanced Functional Materials, 2020, 30, 2003912.	14.9	13

#	Article	IF	CITATIONS
19	A Pulsatile Flow System to Engineer Aneurysm and Atherosclerosis Mimetic Extracellular Matrix. Advanced Science, 2020, 7, 2000173.	11.2	17
20	Synthetic and living micropropellers for convection-enhanced nanoparticle transport. Science Advances, 2019, 5, eaav4803.	10.3	109
21	Rethinking human enhancement as collective welfarism. Nature Human Behaviour, 2019, 3, 204-206.	12.0	8
22	Robotically controlled microprey to resolve initial attack modes preceding phagocytosis. Science Robotics, 2017, 2, .	17.6	49
23	Magnetically Actuated Protease Sensors for in Vivo Tumor Profiling. Nano Letters, 2016, 16, 6303-6310.	9.1	45
24	Magnetically actuated and guided milli-gripper for medical applications. , 2015, , .		7
25	Automated capsulorhexis based on a hybrid magnetic-mechanical actuation system. , 2014, , .		21
26	MiniMag: A Hemispherical Electromagnetic System for 5-DOF Wireless Micromanipulation. Springer Tracts in Advanced Robotics, 2014, , 317-329.	0.4	52
27	Comparison, optimization, and limitations of magnetic manipulation systems. Journal of Micro-Bio Robotics, 2013, 8, 107-120.	2.1	42
28	Three-Dimensional Magnetic Manipulation of Micro- and Nanostructures for Applications in Life Sciences. IEEE Transactions on Magnetics, 2013, 49, 321-330.	2.1	200
29	Iron Nanowires: Graphite Coating of Iron Nanowires for Nanorobotic Applications: Synthesis, Characterization and Magnetic Wireless Manipulation (Adv. Funct. Mater. 7/2013). Advanced Functional Materials, 2013, 23, 782-782.	14.9	0
30	Graphite Coating of Iron Nanowires for Nanorobotic Applications: Synthesis, Characterization and Magnetic Wireless Manipulation. Advanced Functional Materials, 2013, 23, 823-831.	14.9	48
31	Non-contact, 3D magnetic biomanipulation for in vivo and in vitro applications. , 2012, , .		3
32	Helical and Tubular Lipid Microstructures that are Electrolessâ€Coated with CoNiReP for Wireless Magnetic Manipulation. Small, 2012, 8, 1498-1502.	10.0	51
33	Fabricating devices with dielectrophoretically assembled, suspended single walled carbon nanotubes for improved nanoelectronic device characterization. Microelectronic Engineering, 2011, 88, 2740-2743.	2.4	7