
Anna Finne-Wistrand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3315997/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An aligned fibrous and thermosensitive hyaluronic acid-puramatrix interpenetrating polymer network hydrogel with mechanical properties adjusted for neural tissue. Journal of Materials Science, 2022, 57, 2883-2896.	3.7	5
2	Hydrogel Polyester Scaffolds via Direct-Ink-Writing of Ad Hoc Designed Photocurable Macromonomer. Polymers, 2022, 14, 711.	4.5	2
3	Immune-instructive copolymer scaffolds using plant-derived nanoparticles to promote bone regeneration. Inflammation and Regeneration, 2022, 42, 12.	3.7	4
4	Capturing the Real-Time Hydrolytic Degradation of a Library of Biomedical Polymers by Combining Traditional Assessment and Electrochemical Sensors. Biomacromolecules, 2021, 22, 949-960.	5.4	10
5	Understanding of how the properties of medical grade lactide based copolymer scaffolds influence adipose tissue regeneration: Sterilization and a systematic in vitro assessment. Materials Science and Engineering C, 2021, 124, 112020.	7.3	11
6	Pliable, Scalable, and Degradable Scaffolds with Varying Spatial Stiffness and Tunable Compressive Modulus Produced by Adopting a Modular Design Strategy at the Macrolevel. ACS Polymers Au, 2021, 1, 107-122.	4.1	3
7	Poly(ε-caprolactone- <i>co</i> - <i>p</i> -dioxanone): a Degradable and Printable Copolymer for Pliable 3D Scaffolds Fabrication toward Adipose Tissue Regeneration. Biomacromolecules, 2020, 21, 188-198.	5.4	27
8	Printability and Critical Insight into Polymer Properties during Direct-Extrusion Based 3D Printing of Medical Grade Polylactide and Copolyesters. Biomacromolecules, 2020, 21, 388-396.	5.4	37
9	Synthetic Approaches to Combine the Versatility of the Thiol Chemistry with the Degradability of Aliphatic Polyesters. Polymer Reviews, 2020, 60, 86-113.	10.9	5
10	Nondegradative additive manufacturing of medical grade copolyesters of high molecular weight and with varied elastic response. Journal of Applied Polymer Science, 2020, 137, 48550.	2.6	12
11	Organocatalytic strategy to telechelic oligo(Îμ-caprolactone-co-p-dioxanone): Photocurable macromonomers for polyester networks. European Polymer Journal, 2020, 141, 110098.	5.4	8
12	Engineering 3D degradable, pliable scaffolds toward adipose tissue regeneration; optimized printability, simulations and surface modification. Journal of Tissue Engineering, 2020, 11, 204173142095431.	5.5	23
13	Minimise thermo-mechanical batch variations when processing medical grade lactide based copolymers in additive manufacturing. Polymer Degradation and Stability, 2020, 181, 109372.	5.8	8
14	Multipurpose Degradable Physical Adhesive Based on Poly(<scp>d,l</scp> â€lactideâ€ <i>co</i> â€trimethylene) T	ijĘŢĢq0 0	0 rgBT /Ovei
15	Computational and experimental characterization of 3D-printed PCL structures toward the design of soft biological tissue scaffolds. Materials and Design, 2020, 188, 108488.	7.0	42
16	Inclusion of isolated α-amino acids along the polylactide chain through organocatalytic ring-opening copolymerization. European Polymer Journal, 2020, 131, 109703.	5.4	11
17	Poly(<scp>l</scp> -lactide) and Poly(<scp>l</scp> -lactide- <i>co</i> -trimethylene carbonate) Melt-Spun Fibers: Structure–Processing–Properties Relationship. Biomacromolecules, 2019, 20, 1346-1361.	5.4	22

#	Article	IF	CITATIONS
19	Minimizing the time gap between service lifetime and complete resorption of degradable melt-spun multifilament fibers. Polymer Degradation and Stability, 2019, 163, 43-51.	5.8	18
20	3D and Porous RGDCâ€Functionalized Polyesterâ€Based Scaffolds as a Niche to Induce Osteogenic Differentiation of Human Bone Marrow Stem Cells. Macromolecular Bioscience, 2019, 19, e1900049.	4.1	14
21	Biocompatibility of Resorbable Polymers: A Historical Perspective and Framework for the Future. Biomacromolecules, 2019, 20, 1465-1477.	5.4	109
22	Wood-based nanocellulose and bioactive glass modified gelatin–alginate bioinks for 3D bioprinting of bone cells. Biofabrication, 2019, 11, 035010.	7.1	125
23	Medical grade polylactide, copolyesters and polydioxanone: Rheological properties and melt stability. Polymer Testing, 2018, 72, 214-222.	4.8	22
24	Delivery of VEGFA in bone marrow stromal cells seeded in copolymer scaffold enhances angiogenesis, but is inadequate for osteogenesis as compared with the dual delivery of VEGFA and BMP2 in a subcutaneous mouse model. Stem Cell Research and Therapy, 2018, 9, 23.	5.5	34
25	Redox-Responsive Disulfide Cross-Linked PLA–PEG Nanoparticles. Macromolecules, 2017, 50, 7052-7061.	4.8	37
26	Template-Assisted Enzymatic Synthesis of Oligopeptides from a Polylactide Chain. Biomacromolecules, 2017, 18, 4271-4280.	5.4	9
27	Surfactant tuning of hydrophilicity of porous degradable copolymer scaffolds promotes cellular proliferation and enhances bone formation. Journal of Biomedical Materials Research - Part A, 2016, 104, 2049-2059.	4.0	17
28	In Vivo Host Response and Degradation of Copolymer Scaffolds Functionalized with Nanodiamonds and Bone Morphogenetic Protein 2. Advanced Healthcare Materials, 2016, 5, 730-742.	7.6	33
29	A Route to Aliphatic Poly(ester)s with Thiol Pendant Groups: From Monomer Design to Editable Porous Scaffolds. Biomacromolecules, 2016, 17, 1383-1394.	5.4	40
30	Cell seeding density is a critical determinant for copolymer scaffoldsâ€induced bone regeneration. Journal of Biomedical Materials Research - Part A, 2015, 103, 3649-3658.	4.0	43
31	Disaggregation and Anionic Activation of Nanodiamonds Mediated by Sodium Hydride—A New Route to Functional Aliphatic Polyesterâ€Based Nanodiamond Materials. Particle and Particle Systems Characterization, 2015, 32, 35-42.	2.3	14
32	Reinforced Degradable Biocomposite by Homogenously Distributed Functionalized Nanodiamond Particles. Macromolecular Materials and Engineering, 2015, 300, 436-447.	3.6	21
33	Release and bioactivity of bone morphogenetic protein-2 are affected by scaffold binding techniques in vitro and in vivo. Journal of Controlled Release, 2015, 197, 148-157.	9.9	102
34	Mapping the synthesis and the impact of low molecular weight PLGA-g-PEG on sol–gel properties to design hierarchical porous scaffolds. Journal of Polymer Research, 2014, 21, 1.	2.4	8
35	Short One-Pot Chemo-Enzymatic Synthesis of <scp>l</scp> -Lysine and <scp>l</scp> -Alanine Diblock Co-Oligopeptides. Biomacromolecules, 2014, 15, 735-743.	5.4	47
36	Copolymerization of 2-Methylene-1,3-dioxepane and Glycidyl Methacrylate, a Well-Defined and Efficient Process for Achieving Functionalized Polyesters for Covalent Binding of Bioactive Molecules. Biomacromolecules, 2013, 14, 2095-2102.	5.4	57

Anna Finne-Wistrand

#	Article	IF	CITATIONS
37	Development of a novel microfluidic device for long-term in situ monitoring of live cells in 3-dimensional matrices. Biomedical Microdevices, 2012, 14, 885-893.	2.8	9
38	Electroactive Hydrophilic Polylactide Surface by Covalent Modification with Tetraaniline. Macromolecules, 2012, 45, 652-659.	4.8	62
39	Random introduction of degradable linkages into functional vinyl polymers by radical ring-opening polymerization, tailored for soft tissue engineering. Polymer Chemistry, 2012, 3, 1260.	3.9	74
40	Degradable amorphous scaffolds with enhanced mechanical properties and homogeneous cell distribution produced by a threeâ€dimensional fiber deposition method. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2739-2749.	4.0	32
41	Electroactive porous tubular scaffolds with degradability and non-cytotoxicity for neural tissue regeneration. Acta Biomaterialia, 2012, 8, 144-153.	8.3	105
42	Degradable and Electroactive Hydrogels with Tunable Electrical Conductivity and Swelling Behavior. Chemistry of Materials, 2011, 23, 1254-1262.	6.7	149
43	Versatile functionalization of polyester hydrogels with electroactive aniline oligomers. Journal of Polymer Science Part A, 2011, 49, 2097-2105.	2.3	60
44	Functional and Highly Porous Scaffolds for Biomedical Applications. Macromolecular Bioscience, 2011, 11, 1432-1442.	4.1	12
45	Polyester copolymer scaffolds enhance expression of bone markers in osteoblastâ€like cells. Journal of Biomedical Materials Research - Part A, 2010, 94A, 631-639.	4.0	29
46	Bioâ€safe synthesis of linear and branched PLLA. Journal of Polymer Science Part A, 2010, 48, 1214-1219.	2.3	17
47	Synthesis of amorphous aliphatic polyesterâ€ether homo―and copolymers by radical polymerization of ketene acetals. Journal of Polymer Science Part A, 2010, 48, 4965-4973.	2.3	32
48	Osteogenic Differentiation by Rat Bone Marrow Stromal Cells on Customized Biodegradable Polymer Scaffolds. Journal of Bioactive and Compatible Polymers, 2010, 25, 207-223.	2.1	53
49	Enhanced Electrical Conductivity by Macromolecular Architecture: Hyperbranched Electroactive and Degradable Block Copolymers Based on Poly(ε-caprolactone) and Aniline Pentamer. Macromolecules, 2010, 43, 4472-4480.	4.8	92
50	Mapping the characteristics of the radical ringâ€opening polymerization of a cyclic ketene acetal towards the creation of a functionalized polyester. Journal of Polymer Science Part A, 2009, 47, 4587-4601.	2.3	25
51	Degradable Porous Scaffolds from Various <scp>l</scp> -Lactide and Trimethylene Carbonate Copolymers Obtained by a Simple and Effective Method. Biomacromolecules, 2009, 10, 149-154.	5.4	58
52	THE USE OF POLYMER DESIGN IN RESORBABLE COLLOIDS. Annual Review of Materials Research, 2006, 36, 369-395.	9.3	18
53	Defining the role of linoleic acid in acrylic bone cement. Journal of Applied Polymer Science, 0, , 52409.	2.6	Ο