
Robert Piotr Strosznajder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3315945/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alterations in the transcriptional profile of genes related to glutamatergic signalling in animal models of Alzheimer's disease. The effect of fingolimod. Folia Neuropathologica, 2022, 60, 10-23.	0.5	1
2	Recent Insights into the Interplay of Alpha-Synuclein and Sphingolipid Signaling in Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 6277.	1.8	11
3	Age-Related Transcriptional Deregulation of Genes Coding Synaptic Proteins in Alzheimer's Disease Murine Model: Potential Neuroprotective Effect of Fingolimod. Frontiers in Molecular Neuroscience, 2021, 14, 660104.	1.4	10
4	Alterations of Transcription of Genes Coding Anti-oxidative and Mitochondria-Related Proteins in Amyloid β Toxicity: Relevance to Alzheimer's Disease. Molecular Neurobiology, 2020, 57, 1374-1388.	1.9	37
5	Fingolimod Affects Transcription of Genes Encoding Enzymes of Ceramide Metabolism in Animal Model of Alzheimer's Disease. Molecular Neurobiology, 2020, 57, 2799-2811.	1.9	18
6	The Cross-Talk Between Sphingolipids and Insulin-Like Growth Factor Signaling: Significance for Aging and Neurodegeneration. Molecular Neurobiology, 2019, 56, 3501-3521.	1.9	54
7	The Role of Ceramide and Sphingosine-1-Phosphate in Alzheimer's Disease and Other Neurodegenerative Disorders. Molecular Neurobiology, 2019, 56, 5436-5455.	1.9	181
8	Modulatory Effects of Fingolimod (FTY720) on the Expression of Sphingolipid Metabolism-Related Genes in an Animal Model of Alzheimer's Disease. Molecular Neurobiology, 2019, 56, 174-185.	1.9	27
9	Alpha-synuclein alters differently gene expression of Sirts, PARPs and other stress response proteins: implications for neurodegenerative disorders. Molecular Neurobiology, 2018, 55, 727-740.	1.9	30
10	Opportunities for the repurposing of PARP inhibitors for the therapy of nonâ€oncological diseases. British Journal of Pharmacology, 2018, 175, 192-222.	2.7	160
11	Inhibition of Poly(ADP-ribose) Polymerase-1 Enhances Gene Expression of Selected Sirtuins and APP Cleaving Enzymes in Amyloid Beta Cytotoxicity. Molecular Neurobiology, 2018, 55, 4612-4623.	1.9	27
12	Inhibition of poly(ADP-ribose) polymerase-1 alters expression of mitochondria-related genes in PC12 cells: relevance to mitochondrial homeostasis in neurodegenerative disorders. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 281-288.	1.9	19
13	The role of ceramide and SEW 2871 in the transcription of enzymes involved in amyloid b precursor protein metabolism in an experimental model of Alzheimer's disease. Folia Neuropathologica, 2018, 56, 196-205.	0.5	8
14	Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders. Neurochemical Research, 2017, 42, 876-890.	1.6	190
15	Levels of selected pro- and anti-inflammatory cytokines in cerebrospinal fluid in patients with hydrocephalus. Folia Neuropathologica, 2017, 55, 301-307.	0.5	17
16	Sirtuins and their interactions with transcription factors and poly(ADP-ribose) polymerases. Folia Neuropathologica, 2016, 3, 212-233.	0.5	31
17	The Lipoxygenases: Their Regulation and Implication in Alzheimer's Disease. Neurochemical Research, 2016, 41, 243-257.	1.6	90
18	Sphingosine-1-Phosphate and Its Effect on Glucose Deprivation/Glucose Reload Stress: From Gene Expression to Neuronal Survival. Molecular Neurobiology, 2015, 51, 1300-1308.	1.9	13

#	Article	IF	CITATIONS
19	Ceramide in the Molecular Mechanisms of Neuronal Cell Death. The Role of Sphingosine-1-Phosphate. Molecular Neurobiology, 2014, 50, 26-37.	1.9	70
20	Original article Sphingosine kinases modulate the secretion of amyloid β precursor protein from SH-SY5Y neuroblastoma cells: the role of α-synuclein. Folia Neuropathologica, 2014, 1, 70-78.	0.5	13
21	Expression and activity of PARP family members in the hippocampus during systemic inflammation: Their role in the regulation of prooxidative genes. Neurochemistry International, 2013, 62, 664-673.	1.9	25
22	Evaluation of the antioxidative properties of lipoxygenase inhibitors. Pharmacological Reports, 2012, 64, 1179-1188.	1.5	62
23	Natural Inhibitors of Poly(ADP-ribose) Polymerase-1. Molecular Neurobiology, 2012, 46, 55-63.	1.9	38
24	Poly(ADP-ribose) Polymerase-1 in Amyloid Beta Toxicity and Alzheimer's Disease. Molecular Neurobiology, 2012, 46, 78-84.	1.9	87
25	Inhibition of poly(ADP-ribose) polymerase-1 attenuates the toxicity of carbon tetrachloride. Journal of Enzyme Inhibition and Medicinal Chemistry, 2011, 26, 883-889.	2.5	4
26	Lipoxygenases and Poly(ADP-Ribose) Polymerase in Amyloid Beta Cytotoxicity. Neurochemical Research, 2011, 36, 839-848.	1.6	16
27	Poly(ADP-Ribose) Metabolism in Brain and Its Role in Ischemia Pathology. Molecular Neurobiology, 2010, 41, 187-196.	1.9	51
28	Lipoxygenase inhibitors protect brain cortex macromolecules against oxidation evoked by nitrosative stress. , 2010, 48, 283-92.		8
29	Systemic administration of lipopolysaccharide impairs glutathione redox state and object recognition in male mice. The effect of PARP-1 inhibitor. , 2009, 47, 321-8.		29
30	Molecular mechanism of PC12 cell death evoked by sodium nitroprusside, a nitric oxide donor Acta Biochimica Polonica, 2008, 55, 339-347.	0.3	29
31	Molecular mechanism of PC12 cell death evoked by sodium nitroprusside, a nitric oxide donor. Acta Biochimica Polonica, 2008, 55, 339-47.	0.3	13
32	GSK-3beta and oxidative stress in aged brain. Role of poly(ADPribose) polymerase-1. Folia Neuropathologica, 2007, 45, 220-9.	0.5	15
33	Effect of 3-aminobenzamide on Bcl-2, Bax and AIF localization in hippocampal neurons altered by ischemia-reperfusion injury. the immunocytochemical study. Acta Neurobiologiae Experimentalis, 2006, 66, 15-22.	0.4	18
34	Poly(ADP-Ribose) Polymerase: The Nuclear Target in Signal Transduction and Its Role in Brain Ischemia–Reperfusion Injury. Molecular Neurobiology, 2005, 31, 149-168.	1.9	47
35	Effect of aging and oxidative/genotoxic stress on poly(ADP-ribose) polymerase-1 activity in rat brain Acta Biochimica Polonica, 2005, 52, 909-914.	0.3	15
36	Effect of carvedilol on neuronal survival and poly(ADP-ribose) polymerase activity in hippocampus after transient forebrain ischemia. Acta Neurobiologiae Experimentalis, 2005, 65, 137-43.	0.4	6

#	Article	IF	CITATIONS
37	Inhibition of poly(ADP-ribose) polymerase activity protects hippocampal cells against morphological and ultrastructural alteration evoked by ischemia-reperfusion injury. Folia Neuropathologica, 2005, 43, 156-65.	0.5	17
38	Effect of aging and oxidative/genotoxic stress on poly(ADP-ribose) polymerase-1 activity in rat brain. Acta Biochimica Polonica, 2005, 52, 909-14.	0.3	6
39	Amyloid β(1–42) and its β(25–35) fragment induce activation and membrane translocation of cytosolic phospholipase A2 in bovine retina capillary pericytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2004, 1686, 125-138.	1.2	30
40	The effects of organic solvents on poly(ADP-ribose) polymerase-1 activity: implications for neurotoxicity. Acta Neurobiologiae Experimentalis, 2004, 64, 467-73.	0.4	8
41	Poly(ADP-Ribose) Polymerase During Reperfusion After Transient Forebrain Ischemia: Its Role in Brain Edema and Cell Death. Journal of Molecular Neuroscience, 2003, 20, 61-72.	1.1	43
42	Amyloid β(1–42) and its β(25–35) fragment induce in vitro phosphatidylcholine hydrolysis in bovine retina capillary pericytes. Neuroscience Letters, 2001, 303, 185-188.	1.0	12
43	t-Butyl hydroperoxide and oxidized low density lipoprotein enhance phospholipid hydrolysis in lipopolysaccharide-stimulated retinal pericytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2001, 1531, 143-155.	1.2	31
44	Aggregated beta amyloid peptide 1-40 decreases Ca2+- and cholinergic receptor-mediated phosphoinositide degradation by alteration of membrane and cytosolic phospholipase C in brain cortex. Neurochemical Research, 2000, 25, 189-196.	1.6	8
45	Regulation of phospholipase C activity by calcium ions and guanine nucleotide in the normoxic cat carotid body. , 2000, 25, 739-743.		2
46	Alteration of phosphoinositide degradation by cytosolic and membrane-bound phospholipases after forebrain ischemia-reperfusion in gerbil: effects of amyloid beta peptide. Neurochemical Research, 1999, 24, 1277-1284.	1.6	4
47	Amyloid β peptide 25–35 modulates hydrolysis of phosphoinositides by membrane phospholipase(s) C of adult brain cortex. Journal of Molecular Neuroscience, 1999, 12, 101-109.	1.1	18
48	Arachidonate transport through the bloodâ€retina and bloodâ€brain barrier of the rat after reperfusion of varying duration following complete cerebral ischemia. International Journal of Developmental Neuroscience, 1998, 16, 103-113.	0.7	6
49	Effect of hypoxia and dopamine on arachidonic acid metabolism in superior cervical ganglion. Neurochemical Research, 1997, 22, 1193-1197.	1.6	3
50	Arachidonate transport through the blood-retina and blood-brain barrier of the rat during aging. Neuroscience Letters, 1996, 209, 145-148.	1.0	12
51	Stimulation of phosphoinositide degradation and phosphatidylinositol-4-phosphate phosphorylation by GTP exclusively in plasma membrane of rat brain. Neurochemical Research, 1989, 14, 717-723.	1.6	16