List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3315779/publications.pdf

Version: 2024-02-01

1697 2500 424 44,072 104 196 citations h-index g-index papers 436 436 436 38207 all docs citing authors docs citations times ranked

#	Article	IF	Citations
1	Carbon-Based Supercapacitors Produced by Activation of Graphene. Science, 2011, 332, 1537-1541.	6.0	5,528
2	Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science, 2016, 354, 1410-1414.	6.0	1,262
3	Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation. Journal of the American Chemical Society, 2017, 139, 14143-14149.	6.6	1,215
4	Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nature Catalysis, 2018, 1, 935-945.	16.1	1,075
5	Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries. Science, 2014, 343, 519-522.	6.0	943
6	PdMo bimetallene for oxygen reduction catalysis. Nature, 2019, 574, 81-85.	13.7	935
7	Isolated Ni single atoms in graphene nanosheets for high-performance CO ₂ reduction. Energy and Environmental Science, 2018, 11, 893-903.	15.6	811
8	Nitrogenâ€Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells. Advanced Materials, 2018, 30, 1706758.	11,1	788
9	Highly active atomically dispersed CoN ₄ fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy. Energy and Environmental Science, 2019, 12, 250-260.	15.6	691
10	Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nature Energy, 2020, 5, 386-397.	19.8	621
11	Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nature Communications, 2016, 7, 11850.	5.8	607
12	Hierarchically Porous M–N–C (M = Co and Fe) Singleâ€Atom Electrocatalysts with Robust MN <i>_x</i> Active Moieties Enable Enhanced ORR Performance. Advanced Energy Materials, 2018, 8, 1801956.	10.2	540
13	Conversion Reaction Mechanisms in Lithium Ion Batteries: Study of the Binary Metal Fluoride Electrodes. Journal of the American Chemical Society, 2011, 133, 18828-18836.	6.6	492
14	Hard–Soft Composite Carbon as a Longâ€Cycling and Highâ€Rate Anode for Potassiumâ€Ion Batteries. Advanced Functional Materials, 2017, 27, 1700324.	7.8	471
15	New Approach to Fully Ordered fct-FePt Nanoparticles for Much Enhanced Electrocatalysis in Acid. Nano Letters, 2015, 15, 2468-2473.	4.5	385
16	Resolution Limits of Electron-Beam Lithography toward the Atomic Scale. Nano Letters, 2013, 13, 1555-1558.	4.5	350
17	Prolonged Hot Electron Dynamics in Plasmonicâ€Metal/Semiconductor Heterostructures with Implications for Solar Photocatalysis. Angewandte Chemie - International Edition, 2014, 53, 7887-7891.	7.2	349
18	Tuning Nanoparticle Structure and Surface Strain for Catalysis Optimization. Journal of the American Chemical Society, 2014, 136, 7734-7739.	6.6	349

#	Article	IF	Citations
19	Monodisperse AgPd Alloy Nanoparticles and Their Superior Catalysis for the Dehydrogenation of Formic Acid. Angewandte Chemie - International Edition, 2013, 52, 3681-3684.	7.2	348
20	Fe Stabilization by Intermetallic L1 ₀ -FePt and Pt Catalysis Enhancement in L1 ₀ -FePt/Pt Nanoparticles for Efficient Oxygen Reduction Reaction in Fuel Cells. Journal of the American Chemical Society, 2018, 140, 2926-2932.	6.6	312
21	A Singleâ€Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 9640-9645.	7.2	312
22	Investigation of Changes in the Surface Structure of Li _{<i>x</i>} Ni _{0.8} Co _{0.15} Al _{0.05} O ₂ Cathode Materials Induced by the Initial Charge. Chemistry of Materials, 2014, 26, 1084-1092.	3.2	308
23	Ordered Pt ₃ Co Intermetallic Nanoparticles Derived from Metal–Organic Frameworks for Oxygen Reduction. Nano Letters, 2018, 18, 4163-4171.	4.5	304
24	Surface Plasmon-Driven Water Reduction: Gold Nanoparticle Size Matters. Journal of the American Chemical Society, 2014, 136, 9842-9845.	6.6	301
25	A General Method for Multimetallic Platinum Alloy Nanowires as Highly Active and Stable Oxygen Reduction Catalysts. Advanced Materials, 2015, 27, 7204-7212.	11.1	280
26	Ordered PdCuâ€Based Nanoparticles as Bifunctional Oxygenâ€Reduction and Ethanolâ€Oxidation Electrocatalysts. Angewandte Chemie - International Edition, 2016, 55, 9030-9035.	7.2	278
27	Seed-Mediated Synthesis of Core/Shell FePtM/FePt (M = Pd, Au) Nanowires and Their Electrocatalysis for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2013, 135, 13879-13884.	6.6	269
28	Palladium–Tin Alloyed Catalysts for the Ethanol Oxidation Reaction in an Alkaline Medium. ACS Catalysis, 2012, 2, 287-297.	5.5	266
29	Single Cobalt Sites Dispersed in Hierarchically Porous Nanofiber Networks for Durable and Highâ€Power PGMâ€Free Cathodes in Fuel Cells. Advanced Materials, 2020, 32, e2003577.	11.1	262
30	Kirkendall Effect and Lattice Contraction in Nanocatalysts: A New Strategy to Enhance Sustainable Activity. Journal of the American Chemical Society, 2011, 133, 13551-13557.	6.6	255
31	Selfâ€Assembled Fe–Nâ€Doped Carbon Nanotube Aerogels with Singleâ€Atom Catalyst Feature as Highâ€Efficiency Oxygen Reduction Electrocatalysts. Small, 2017, 13, 1603407.	5.2	254
32	Synthetic Control of FePtM Nanorods (M = Cu, Ni) To Enhance the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2013, 135, 7130-7133.	6.6	250
33	Controlling the Active Sites of Sulfurâ€Doped Carbon Nanotube–Graphene Nanolobes for Highly Efficient Oxygen Evolution and Reduction Catalysis. Advanced Energy Materials, 2016, 6, 1501966.	10.2	242
34	Interpenetrating Triphase Cobaltâ€Based Nanocomposites as Efficient Bifunctional Oxygen Electrocatalysts for Longâ€Lasting Rechargeable Zn–Air Batteries. Advanced Energy Materials, 2018, 8, 1702900.	10.2	242
35	Elucidating anionic oxygen activity in lithium-rich layered oxides. Nature Communications, 2018, 9, 947.	5.8	241
36	Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis. Nature Materials, 2016, 15, 889-895.	13.3	239

#	Article	IF	Citations
37	Ensemble Effect in Bimetallic Electrocatalysts for CO ₂ Reduction. Journal of the American Chemical Society, 2019, 141, 16635-16642.	6.6	238
38	Direct visualization of the Jahn–Teller effect coupled to Na ordering in Na5/8MnO2. Nature Materials, 2014, 13, 586-592.	13.3	237
39	Surface regulation enables high stability of single-crystal lithium-ion cathodes at high voltage. Nature Communications, 2020, 11, 3050.	5 . 8	225
40	Ultrathin PtNiM (M = Rh, Os, and Ir) Nanowires as Efficient Fuel Oxidation Electrocatalytic Materials. Advanced Materials, 2019, 31, e1805833.	11.1	223
41	3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: a balance between graphitization and hierarchical porosity. Energy and Environmental Science, 2019, 12, 2830-2841.	15.6	219
42	Nanoceria-Supported Single-Atom Platinum Catalysts for Direct Methane Conversion. ACS Catalysis, 2018, 8, 4044-4048.	5 . 5	214
43	Nitride Stabilized PtNi Core–Shell Nanocatalyst for high Oxygen Reduction Activity. Nano Letters, 2012, 12, 6266-6271.	4.5	213
44	Metallic and Insulating Oxide Interfaces Controlled by Electronic Correlations. Science, 2011, 331, 886-889.	6.0	212
45	Ordered bilayer ruthenium–platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts. Nature Communications, 2013, 4, 2466.	5.8	200
46	Atomic Arrangement Engineering of Metallic Nanocrystals for Energy-Conversion Electrocatalysis. Joule, 2019, 3, 956-991.	11.7	197
47	Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors. Nature Communications, 2015, 6, 6824.	5. 8	195
48	Bimetallic synergy in cobalt–palladium nanocatalysts for CO oxidation. Nature Catalysis, 2019, 2, 78-85.	16.1	195
49	Ethanol oxidation on the ternary Pt–Rh–SnO2/C electrocatalysts with varied Pt:Rh:Sn ratios. Electrochimica Acta, 2010, 55, 4331-4338.	2.6	191
50	Platinum-Monolayer Shell on AuNi _{0.5} Fe Nanoparticle Core Electrocatalyst with High Activity and Stability for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2010, 132, 14364-14366.	6.6	191
51	Doping effect on the dielectric property in bismuth titanate. Journal of Applied Physics, 2004, 95, 3126-3130.	1.1	185
52	Structure-Induced Enhancement in Electrooxidation of Trimetallic FePtAu Nanoparticles. Journal of the American Chemical Society, 2012, 134, 5060-5063.	6.6	185
53	Platinum-Tin Oxide Core–Shell Catalysts for Efficient Electro-Oxidation of Ethanol. Journal of the American Chemical Society, 2014, 136, 10862-10865.	6.6	180
54	Discrete Nanocubes as Plasmonic Reporters of Molecular Chirality. Nano Letters, 2013, 13, 3145-3151.	4.5	178

#	Article	IF	CITATIONS
55	Highly Active Pt ₃ Pb and Core–Shell Pt ₃ Pb–Pt Electrocatalysts for Formic Acid Oxidation. ACS Nano, 2012, 6, 2818-2825.	7.3	177
56	Zeolite-Encapsulated Pt Nanoparticles for Tandem Catalysis. Journal of the American Chemical Society, 2018, 140, 13514-13520.	6.6	174
57	Cu ₃ N Nanocubes for Selective Electrochemical Reduction of CO ₂ to Ethylene. Nano Letters, 2019, 19, 8658-8663.	4.5	173
58	Nanocatalyst Superior to Pt for Oxygen Reduction Reactions: The Case of Core/Shell Ag(Au)/CuPd Nanoparticles. Journal of the American Chemical Society, 2014, 136, 15026-15033.	6.6	172
59	Mn- and N- doped carbon as promising catalysts for oxygen reduction reaction: Theoretical prediction and experimental validation. Applied Catalysis B: Environmental, 2019, 243, 195-203.	10.8	170
60	Highly Active Iridium/Iridium–Tin/Tin Oxide Heterogeneous Nanoparticles as Alternative Electrocatalysts for the Ethanol Oxidation Reaction. Journal of the American Chemical Society, 2011, 133, 15172-15183.	6.6	167
61	Monodisperse Core/Shell Ni/FePt Nanoparticles and Their Conversion to Ni/Pt to Catalyze Oxygen Reduction. Journal of the American Chemical Society, 2014, 136, 15921-15924.	6.6	165
62	Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery. Journal of Hazardous Materials, 2018, 346, 199-207.	6. 5	165
63	Ultrathin Visibleâ€Lightâ€Driven Mo Incorporating In ₂ O ₃ –ZnIn ₂ Se ₄ Zâ€Scheme Nanosheet Photocatalysts. Advanced Materials, 2019, 31, e1807226.	11.1	165
64	Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy. Nature Communications, 2016, 7, 11441.	5.8	162
65	Morphology Control of Carbon-Free Spinel NiCo ₂ O ₄ Catalysts for Enhanced Bifunctional Oxygen Reduction and Evolution in Alkaline Media. ACS Applied Materials & Discrete Amp; Interfaces, 2017, 9, 44567-44578.	4.0	161
66	Bimetallic IrNi core platinum monolayer shell electrocatalysts for the oxygen reduction reaction. Energy and Environmental Science, 2012, 5, 5297-5304.	15.6	156
67	Tuning the Anode–Electrolyte Interface Chemistry for Garnetâ€Based Solidâ€State Li Metal Batteries. Advanced Materials, 2020, 32, e2000030.	11.1	156
68	Role of Chemical Composition in the Enhanced Catalytic Activity of Pt-Based Alloyed Ultrathin Nanowires for the Hydrogen Oxidation Reaction under Alkaline Conditions. ACS Catalysis, 2016, 6, 3895-3908.	5 . 5	155
69	Core–Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2018, 57, 2963-2966.	7.2	154
70	Tungstenâ€Doped L1 ₀ â€PtCo Ultrasmall Nanoparticles as a Highâ€Performance Fuel Cell Cathode. Angewandte Chemie - International Edition, 2019, 58, 15471-15477.	7.2	150
71	CuNi Nanoparticles Assembled on Graphene for Catalytic Methanolysis of Ammonia Borane and Hydrogenation of Nitro/Nitrile Compounds. Chemistry of Materials, 2017, 29, 1413-1418.	3.2	149
72	Tailoring FeN ₄ Sites with Edge Enrichment for Boosted Oxygen Reduction Performance in Proton Exchange Membrane Fuel Cell. Advanced Energy Materials, 2019, 9, 1803737.	10.2	148

#	Article	IF	CITATIONS
73	In Situ Characterization of Cu/CeO ₂ Nanocatalysts for CO ₂ Hydrogenation: Morphological Effects of Nanostructured Ceria on the Catalytic Activity. Journal of Physical Chemistry C, 2018, 122, 12934-12943.	1.5	145
74	Low temperature solid oxide fuel cells with hierarchically porous cathode nano-network. Nano Energy, 2014, 8, 25-33.	8.2	144
75	Ultra-low thermal conductivity and high strength of aerogels/fibrous ceramic composites. Journal of the European Ceramic Society, 2016, 36, 1487-1493.	2.8	140
76	Ternary metal fluorides as high-energy cathodes with low cycling hysteresis. Nature Communications, 2015, 6, 6668.	5.8	138
77	High energy-density and reversibility of iron fluoride cathode enabled via an intercalation-extrusion reaction. Nature Communications, 2018, 9, 2324.	5.8	136
78	Sea urchin-like cobalt–iron phosphide as an active catalyst for oxygen evolution reaction. Nanoscale, 2016, 8, 3244-3247.	2.8	135
79	Highly Active Ceria-Supported Ru Catalyst for the Dry Reforming of Methane: In Situ Identification of Ru ^{Î+} –Ce ³⁺ Interactions for Enhanced Conversion. ACS Catalysis, 2019, 9, 3349-3359.	5.5	135
80	Gold-promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction. Nature Communications, 2014 , 5 , 5185 .	5.8	134
81	Quasi-Covalently Coupled Ni–Cu Atomic Pair for Synergistic Electroreduction of CO ₂ . Journal of the American Chemical Society, 2022, 144, 9661-9671.	6.6	134
82	An Oxygenâ€Vacancyâ€Rich Semiconductorâ€Supported Bifunctional Catalyst for Efficient and Stable Zinc–Air Batteries. Advanced Materials, 2019, 31, e1806761.	11.1	133
83	Controlled Anisotropic Growth of Coâ€Feâ€P from Coâ€Feâ€O Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 9642-9645.	7.2	132
84	Synthesis and X-ray Characterization of Cobalt Phosphide (Co ₂ P) Nanorods for the Oxygen Reduction Reaction. ACS Nano, 2015, 9, 8108-8115.	7.3	132
85	Quaternary FeCoNiMn-Based Nanocarbon Electrocatalysts for Bifunctional Oxygen Reduction and Evolution: Promotional Role of Mn Doping in Stabilizing Carbon. ACS Catalysis, 2017, 7, 8386-8393.	5.5	131
86	Metal-organic frameworks derived platinum-cobalt bimetallic nanoparticles in nitrogen-doped hollow porous carbon capsules as a highly active and durable catalyst for oxygen reduction reaction. Applied Catalysis B: Environmental, 2018, 225, 496-503.	10.8	131
87	Lead-Free Cs ₄ CuSb ₂ Cl ₁₂ Layered Double Perovskite Nanocrystals. Journal of the American Chemical Society, 2020, 142, 11927-11936.	6.6	131
88	C–O bond activation using ultralow loading of noble metal catalysts on moderately reducible oxides. Nature Catalysis, 2020, 3, 446-453.	16.1	131
89	Nanovoid Incorporated Ir _{<i>x</i>} Cu Metallic Aerogels for Oxygen Evolution Reaction Catalysis. ACS Energy Letters, 2018, 3, 2038-2044.	8.8	129
90	Ag@Au Concave Cuboctahedra: A Unique Probe for Monitoring Au-Catalyzed Reduction and Oxidation Reactions by Surface-Enhanced Raman Spectroscopy. ACS Nano, 2016, 10, 2607-2616.	7.3	125

#	Article	IF	Citations
91	Atomically Dispersed MnN ₄ Catalysts <i>via</i> Environmentally Benign Aqueous Synthesis for Oxygen Reduction: Mechanistic Understanding of Activity and Stability Improvements. ACS Catalysis, 2020, 10, 10523-10534.	5.5	123
92	Sodiation Kinetics of Metal Oxide Conversion Electrodes: A Comparative Study with Lithiation. Nano Letters, 2015, 15, 5755-5763.	4.5	122
93	Engineering Atomically Dispersed FeN ₄ Active Sites for CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2021, 60, 1022-1032.	7.2	121
94	Dynamically Unveiling Metal–Nitrogen Coordination during Thermal Activation to Design Highâ€Efficient Atomically Dispersed CoN ₄ Active Sites. Angewandte Chemie - International Edition, 2021, 60, 9516-9526.	7.2	119
95	Flexible Multiferroic Bulk Heterojunction with Giant Magnetoelectric Coupling <i>via</i> van der Waals Epitaxy. ACS Nano, 2017, 11, 6122-6130.	7.3	118
96	Porous Carbonâ€Hosted Atomically Dispersed Iron–Nitrogen Moiety as Enhanced Electrocatalysts for Oxygen Reduction Reaction in a Wide Range of pH. Small, 2018, 14, e1703118.	5.2	117
97	A multifunctional hierarchical porous SiO2/GO membrane for high efficiency oil/water separation and dye removal. Carbon, 2020, 160, 88-97.	5 . 4	117
98	Tuning CO2 hydrogenation selectivity via metal-oxide interfacial sites. Journal of Catalysis, 2019, 374, 60-71.	3.1	115
99	Biaxial Strains Mediated Oxygen Reduction Electrocatalysis on Fenton Reaction Resistant L1 ₀ â€PtZn Fuel Cell Cathode. Advanced Energy Materials, 2020, 10, 2000179.	10.2	112
100	3D polymer hydrogel for high-performance atomic iron-rich catalysts for oxygen reduction in acidic media. Applied Catalysis B: Environmental, 2017, 219, 629-639.	10.8	111
101	3d-Orbital Occupancy Regulated Ir-Co Atomic Pair Toward Superior Bifunctional Oxygen Electrocatalysis. ACS Catalysis, 2021, 11, 8837-8846.	5.5	110
102	Electrochemical performance of graphene nanosheets and ceramic composites as anodes for lithium batteries. Journal of Materials Chemistry, 2009, 19, 9063.	6.7	109
103	Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage. Nature Communications, 2016, 7, 13370.	5.8	109
104	Single crystal cathodes enabling high-performance all-solid-state lithium-ion batteries. Energy Storage Materials, 2020, 30, 98-103.	9.5	109
105	Flexible Heteroepitaxy of CoFe ₂ O ₄ /Muscovite Bimorph with Large Magnetostriction. ACS Applied Materials & Distriction among the company of the company	4.0	108
106	Stabilizing CuPd Nanoparticles via CuPd Coupling to WO _{2.72} Nanorods in Electrochemical Oxidation of Formic Acid. Journal of the American Chemical Society, 2017, 139, 15191-15196.	6.6	106
107	Boosting CO2 reduction on Fe-N-C with sulfur incorporation: Synergistic electronic and structural engineering. Nano Energy, 2020, 68, 104384.	8.2	106
108	Active sites for tandem reactions of CO ₂ reduction and ethane dehydrogenation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8278-8283.	3.3	105

#	Article	IF	CITATIONS
109	Overcoming immiscibility toward bimetallic catalyst library. Science Advances, 2020, 6, eaaz6844.	4.7	105
110	Enhancement of the oxygen reduction on nitride stabilized pt-M (M=Fe, Co, and Ni) core–shell nanoparticle electrocatalysts. Nano Energy, 2015, 13, 442-449.	8.2	104
111	Ternary PtlrNi Catalysts for Efficient Electrochemical Ammonia Oxidation. ACS Catalysis, 2020, 10, 3945-3957.	5.5	104
112	Gallium Sulfide–Singleâ€Walled Carbon Nanotube Composites: Highâ€Performance Anodes for Lithiumâ€lon Batteries. Advanced Functional Materials, 2014, 24, 5435-5442.	7.8	102
113	SO ₂ -Induced Selectivity Change in CO ₂ Electroreduction. Journal of the American Chemical Society, 2019, 141, 9902-9909.	6.6	102
114	Direct-methane solid oxide fuel cells with hierarchically porous Ni-based anode deposited with nanocatalyst layer. Nano Energy, 2014, 10, 1-9.	8.2	100
115	Coupled s-p-d Exchange in Facet-Controlled Pd3Pb Tripods Enhances Oxygen Reduction Catalysis. CheM, 2018, 4, 359-371.	5.8	100
116	High-performance ammonia oxidation catalysts for anion-exchange membrane direct ammonia fuel cells. Energy and Environmental Science, 2021, 14, 1449-1460.	15.6	100
117	Dislocation nucleation facilitated by atomicÂsegregation. Nature Materials, 2018, 17, 56-63.	13.3	99
118	Phase evolution of conversion-type electrode for lithium ion batteries. Nature Communications, 2019, 10, 2224.	5.8	99
119	Transitions from Near-Surface to Interior Redox upon Lithiation in Conversion Electrode Materials. Nano Letters, 2015, 15, 1437-1444.	4.5	97
120	Advanced electron microscopy characterization of nanomaterials for catalysis. Green Energy and Environment, 2017, 2, 70-83.	4.7	97
121	LaTiO3/KTaO3 interfaces: A new two-dimensional electron gas system. APL Materials, 2015, 3, .	2.2	94
122	Single-Iron Site Catalysts with Self-Assembled Dual-size Architecture and Hierarchical Porosity for Proton-Exchange Membrane Fuel Cells. Applied Catalysis B: Environmental, 2020, 279, 119400.	10.8	94
123	A facile route to monodisperse MPd (M = Co or Cu) alloy nanoparticles and their catalysis for electrooxidation of formic acid. Nanoscale, 2014, 6, 6970-6973.	2.8	92
124	Sodiation <i>via</i> Heterogeneous Disproportionation in FeF ₂ Electrodes for Sodium-Ion Batteries. ACS Nano, 2014, 8, 7251-7259.	7.3	89
125	Constructing Hierarchical Interfaces: TiO ₂ -Supported PtFeâ€"FeO _{<i>x</i>} Nanowires for Room Temperature CO Oxidation. Journal of the American Chemical Society, 2015, 137, 10156-10159.	6.6	86
126	Core/Shell Au/MnO Nanoparticles Prepared Through Controlled Oxidation of AuMn as an Electrocatalyst for Sensitive H ₂ O ₂ Detection. Angewandte Chemie - International Edition, 2014, 53, 12508-12512.	7.2	84

#	Article	IF	Citations
127	Harnessing strong metal–support interactions via a reverse route. Nature Communications, 2020, 11, 3042.	5.8	84
128	Core–shell, hollow-structured iridium–nickel nitride nanoparticles for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2014, 2, 591-594.	5.2	83
129	Deep learning analysis on microscopic imaging in materials science. Materials Today Nano, 2020, 11, 100087.	2.3	82
130	WO <i>_x</i> ‧urface Decorated PtNi@Pt Dendritic Nanowires as Efficient pHâ€Universal Hydrogen Evolution Electrocatalysts. Advanced Energy Materials, 2021, 11, 2003192.	10.2	82
131	Highâ€Performance Airâ€Processed Polymer–Fullerene Bulk Heterojunction Solar Cells. Advanced Functional Materials, 2009, 19, 3552-3559.	7.8	80
132	Scanning moir \tilde{A} \otimes fringe imaging by scanning transmission electron microscopy. Ultramicroscopy, 2010, 110, 229-233.	0.8	80
133	Determination of Ti coordination from pre-edge peaks in Ti <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>K</mml:mi></mml:math> -edge XANES. Physical Review B, 2007, 76, .	1.1	79
134	Enhancing C–C Bond Scission for Efficient Ethanol Oxidation using PtIr Nanocube Electrocatalysts. ACS Catalysis, 2019, 9, 7618-7625.	5.5	79
135	High Performance Pt Monolayer Catalysts Produced via Core-Catalyzed Coating in Ethanol. ACS Catalysis, 2014, 4, 738-742.	5.5	78
136	Generalized Synthetic Strategy for Transition-Metal-Doped Brookite-Phase TiO ₂ Nanorods. Journal of the American Chemical Society, 2019, 141, 16548-16552.	6.6	78
137	In Situ Transmission Electron Microscopy on Energyâ€Related Catalysis. Advanced Energy Materials, 2020, 10, 1902105.	10.2	78
138	Controlling the Growth of Si/Ge Nanowires and Heterojunctions Using Silver–Gold Alloy Catalysts. ACS Nano, 2012, 6, 6407-6415.	7.3	77
139	Direct Observation of Defectâ€Aided Structural Evolution in a Nickelâ€Rich Layered Cathode. Angewandte Chemie - International Edition, 2020, 59, 22092-22099.	7.2	75
140	A Triphasic Bifunctional Oxygen Electrocatalyst with Tunable and Synergetic Interfacial Structure for Rechargeable Znâ€Air Batteries. Advanced Energy Materials, 2020, 10, 1903003.	10.2	74
141	Modulating the electronic structure of ultrathin layered double hydroxide nanosheets with fluorine: an efficient electrocatalyst for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 14483-14488.	5.2	73
142	Evaluation of Li2O as an efficient sintering aid for gadolinia-doped ceria electrolyte for solid oxide fuel cells. Journal of Power Sources, 2014, 261, 255-263.	4.0	72
143	A "trimurti" heterostructured hybrid with an intimate CoO/Co _x P interface as a robust bifunctional air electrode for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 9177-9184.	5.2	72
144	Supported and coordinated single metal site electrocatalysts. Materials Today, 2020, 37, 93-111.	8.3	71

#	Article	IF	CITATIONS
145	Fe valence determination and Li elemental distribution in lithiated FeO0.7F1.3/C nanocomposite battery materials by electron energy loss spectroscopy (EELS). Micron, 2012, 43, 22-29.	1.1	70
146	Pt monolayer on Au-stabilized PdNi core–shell nanoparticles for oxygen reduction reaction. Electrochimica Acta, 2013, 110, 267-272.	2.6	70
147	A Highly Efficient Allâ€Solidâ€State Lithium/Electrolyte Interface Induced by an Energetic Reaction. Angewandte Chemie - International Edition, 2020, 59, 14003-14008.	7.2	70
148	Defectsâ€Induced Inâ€Plane Heterophase in Cobalt Oxide Nanosheets for Oxygen Evolution Reaction. Small, 2019, 15, e1904903.	5.2	69
149	In Situ Transmission Electron Microscopy for Energy Applications. Joule, 2019, 3, 4-8.	11.7	69
150	SiOC nanolayer wrapped 3D interconnected graphene sponge as a high-performance anode for lithium ion batteries. Journal of Materials Chemistry A, 2018, 6, 9064-9073.	5.2	68
151	Favorable Core/Shell Interface within Co ₂ P/Pt Nanorods for Oxygen Reduction Electrocatalysis. Nano Letters, 2018, 18, 7870-7875.	4.5	68
152	Determining the Resolution Limits of Electron-Beam Lithography: Direct Measurement of the Point-Spread Function. Nano Letters, 2014, 14, 4406-4412.	4.5	67
153	Kinetically-Driven Phase Transformation during Lithiation in Copper Sulfide Nanoflakes. Nano Letters, 2017, 17, 5726-5733.	4.5	67
154	Highly active subnanometer Rh clusters derived from Rh-doped SrTiO3 for CO2 reduction. Applied Catalysis B: Environmental, 2018, 237, 1003-1011.	10.8	67
155	Interface-Induced Polarization and Inhibition of Ferroelectricity in Epitaxial <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>SrTiO</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mo>/<th>10>2:9 10>3 mml:r</th><th>ni>Si</th></mml:mo></mml:math>	10>2:9 10>3 mml:r	ni>Si
156	Atomic imaging using secondary electrons in a scanning transmission electron microscope: Experimental observations and possible mechanisms. Ultramicroscopy, 2011, 111, 865-876.	0.8	65
157	Highly Efficient K _{0.15} MnO ₂ Birnessite Nanosheets for Stable Pseudocapacitive Cathodes. Journal of Physical Chemistry C, 2012, 116, 20173-20181.	1.5	65
158	Avoiding Fracture in a Conversion Battery Material through Reaction with Larger Ions. Joule, 2018, 2, 1783-1799.	11.7	65
159	Programmable Synthesis of Multimetallic Phosphide Nanorods Mediated by Core/Shell Structure Formation and Conversion. Journal of the American Chemical Society, 2020, 142, 8490-8497.	6.6	65
160	Ternary PtSnRh–SnO2 nanoclusters: synthesis and electroactivity for ethanol oxidation fuel cell reaction. Journal of Materials Chemistry, 2011, 21, 8887.	6.7	64
161	Ultrathin two-dimensional metallic nanocrystals for renewable energy electrocatalysis. Materials Today, 2019, 23, 45-56.	8.3	64
162	Tuning infrared plasmon resonances in doped metal-oxide nanocrystals through cation-exchange reactions. Nature Communications, 2019, 10, 1394.	5.8	64

#	Article	IF	CITATIONS
163	Deciphering Interfacial Chemical and Electrochemical Reactions of Sulfideâ€Based Allâ€Solidâ€State Batteries. Advanced Energy Materials, 2021, 11, 2100210.	10.2	63
164	Manipulating the oxygen reduction activity of platinum shells with shape-controlled palladium nanocrystal cores. Chemical Communications, 2013, 49, 9030.	2.2	62
165	Interaction of CuS and Sulfur in Li-S Battery System. Journal of the Electrochemical Society, 2015, 162, A2834-A2839.	1.3	62
166	Atomic Structure Evolution of Pt–Co Binary Catalysts: Single Metal Sites versus Intermetallic Nanocrystals. Advanced Materials, 2021, 33, e2106371.	11.1	62
167	Surface Profile Control of FeNiPt/Pt Core/Shell Nanowires for Oxygen Reduction Reaction. Small, 2015, 11, 3545-3549.	5.2	61
168	Tuning electrocatalytic activity of Pt monolayer shell by bimetallic Ir-M (M=Fe, Co, Ni or Cu) cores for the oxygen reduction reaction. Nano Energy, 2016, 29, 261-267.	8.2	61
169	Super-hydrophobic hexamethyl-disilazane modified ZrO ₂ â€"SiO ₂ aerogels with excellent thermal stability. Journal of Materials Chemistry A, 2016, 4, 5632-5638.	5.2	61
170	Interaction of TiS ₂ and Sulfur in Li-S Battery System. Journal of the Electrochemical Society, 2017, 164, A1291-A1297.	1.3	60
171	Strain Coupling of Conversionâ€type Fe ₃ O ₄ Thin Films for Lithium Ion Batteries. Angewandte Chemie - International Edition, 2017, 56, 7813-7816.	7.2	59
172	Accurate Control of Core–Shell Upconversion Nanoparticles through Anisotropic Strain Engineering. Advanced Functional Materials, 2019, 29, 1903295.	7.8	59
173	A Singleâ€Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction. Angewandte Chemie, 2019, 131, 9742-9747.	1.6	59
174	A highly efficient atomically thin curved PdIr bimetallene electrocatalyst. National Science Review, 2021, 8, nwab019.	4.6	59
175	Carbon-Supported IrNi Core–Shell Nanoparticles: Synthesis, Characterization, and Catalytic Activity. Journal of Physical Chemistry C, 2011, 115, 9894-9902.	1.5	58
176	The role of transition metals in the catalytic activity of Pt alloys: quantification of strain and ligand effects. Chemical Communications, 2014, 50, 2173.	2.2	58
177	Structural Evolution of Sub-10 nm Octahedral Platinum–Nickel Bimetallic Nanocrystals. Nano Letters, 2017, 17, 3926-3931.	4.5	57
178	Ordered PdCuâ€Based Nanoparticles as Bifunctional Oxygenâ€Reduction and Ethanolâ€Oxidation Electrocatalysts. Angewandte Chemie, 2016, 128, 9176-9181.	1.6	56
179	Unveiling the critical role of interfacial ionic conductivity in all-solid-state lithium batteries. Nano Energy, 2020, 72, 104686.	8.2	56
180	Trifunctional Fishbone-like PtCo/Ir Enables High-Performance Zinc–Air Batteries to Drive the Water-Splitting Catalysis. Chemistry of Materials, 2019, 31, 8136-8144.	3.2	55

#	Article	IF	Citations
181	Gram-Scale-Synthesized Pd ₂ Co-Supported Pt Monolayer Electrocatalysts for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2010, 114, 8950-8957.	1.5	54
182	Structure Stabilization by Mixed Anions in Oxyfluoride Cathodes for High-Energy Lithium Batteries. ACS Nano, 2015, 9, 10076-10084.	7.3	54
183	Kinetic Phase Evolution of Spinel Cobalt Oxide during Lithiation. ACS Nano, 2016, 10, 9577-9585.	7.3	54
184	Ultrafine Pd ensembles anchored-Au2Cu aerogels boost ethanol electrooxidation. Nano Energy, 2018, 53, 206-212.	8.2	54
185	General Synthetic Route to High-Quality Colloidal III–V Semiconductor Quantum Dots Based on Pnictogen Chlorides. Journal of the American Chemical Society, 2019, 141, 15145-15152.	6.6	54
186	A graphene-modified flexible SiOC ceramic cloth for high-performance lithium storage. Energy Storage Materials, 2020, 25, 876-884.	9.5	53
187	Palladium–Platinum Core–Shell Electrocatalysts for Oxygen Reduction Reaction Prepared with the Assistance of Citric Acid. ACS Catalysis, 2016, 6, 3428-3432.	5.5	52
188	Surface Proton Transfer Promotes Four-Electron Oxygen Reduction on Gold Nanocrystal Surfaces in Alkaline Solution. Journal of the American Chemical Society, 2017, 139, 7310-7317.	6.6	51
189	Framework Doping of Ni Enhances Pseudocapacitive Na-Ion Storage of (Ni)MnO ₂ Layered Birnessite. Chemistry of Materials, 2019, 31, 8774-8786.	3.2	51
190	Unraveling the Voltage Decay Phenomenon in Liâ€Rich Layered Oxide Cathode of No Oxygen Activity. Advanced Energy Materials, 2019, 9, 1902258.	10.2	51
191	High-strength mullite fibers reinforced ZrO2–SiO2 aerogels fabricated by rapid gel method. Journal of Materials Science, 2015, 50, 7488-7494.	1.7	50
192	Multistep Lithiation of Tin Sulfide: An Investigation Using <i>in Situ</i> Electron Microscopy. ACS Nano, 2018, 12, 3638-3645.	7.3	50
193	Exploring Metal–Support Interactions To Immobilize Subnanometer Co Clusters on γ–Mo ₂ N: A Highly Selective and Stable Catalyst for CO ₂ Activation. ACS Catalysis, 2019, 9, 9087-9097.	5.5	50
194	Inâ€situ structural characterizations of electrochemical intercalation of graphite compounds. , 2019, 1, 200-218.		50
195	Molecular-Level Proximity of Metal and Acid Sites in Zeolite-Encapsulated Pt Nanoparticles for Selective Multistep Tandem Catalysis. ACS Catalysis, 2020, 10, 3340-3348.	5.5	50
196	Performance and image analysis of the aberration-corrected Hitachi HD-2700C STEM. Journal of Electron Microscopy, 2009, 58, 111-122.	0.9	49
197	Origin of 90° domain wall pinning in Pb(Zr _{0.2} Ti _{0.8})O ₃ heteroepitaxial thin films. Applied Physics Letters, 2011, 99, 102902.	1.5	49
198	Structural phase transformation and Fe valence evolution in FeOxF2â^'x/C nanocomposite electrodes during lithiation and de-lithiation processes. Journal of Materials Chemistry A, 2013, 1, 11629.	5.2	49

#	Article	IF	Citations
199	Remarkably Improved Electrode Performance of Bulk MnS by Forming a Solid Solution with FeS – Understanding the Li Storage Mechanism. Advanced Functional Materials, 2014, 24, 5557-5566.	7.8	49
200	Core–shell PdPb@Pd aerogels with multiply-twinned intermetallic nanostructures: facile synthesis with accelerated gelation kinetics and their enhanced electrocatalytic properties. Journal of Materials Chemistry A, 2018, 6, 7517-7521.	5. 2	49
201	Outstanding activity of sub-nm Au clusters for photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2012, 126, 153-160.	10.8	48
202	Iridium–Ruthenium Alloyed Nanoparticles for the Ethanol Oxidation Fuel Cell Reactions. ACS Catalysis, 2012, 2, 1226-1231.	5.5	47
203	Origin of Phonon Glass–Electron Crystal Behavior in Thermoelectric Layered Cobaltate. Advanced Functional Materials, 2013, 23, 5728-5736.	7.8	47
204	In Situ Probing of the Active Site Geometry of Ultrathin Nanowires for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2015, 137, 12597-12609.	6.6	46
205	Oxygen Reduction Kinetics on Pt Monolayer Shell Highly Affected by the Structure of Bimetallic AuNi Cores. Chemistry of Materials, 2016, 28, 5274-5281.	3.2	46
206	Interaction of FeS ₂ and Sulfur in Li-S Battery System. Journal of the Electrochemical Society, 2017, 164, A6039-A6046.	1.3	46
207	Bi-continuous nanoporous carbon sphere derived from SiOC as high-performance anodes for PIBs. Chemical Engineering Journal, 2020, 381, 122677.	6.6	46
208	Undercoordinated Active Sites on 4H Gold Nanostructures for CO ₂ Reduction. Nano Letters, 2020, 20, 8074-8080.	4.5	46
209	Platinum-monolayer electrocatalysts: Palladium interlayer on IrCo alloy core improves activity in oxygen-reduction reaction. Journal of Electroanalytical Chemistry, 2010, 649, 232-237.	1.9	45
210	Pyrolytic transformation of liquid precursors to shaped bulk ceramics. Journal of the European Ceramic Society, 2010, 30, 1503-1511.	2.8	45
211	Effects of proton irradiation on structural and electrochemical charge storage properties of TiO ₂ nanotube electrodes for lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 11815-11824.	5.2	45
212	Pt alloy nanoparticles decorated on large-size nitrogen-doped graphene tubes for highly stable oxygen-reduction catalysts. Nanoscale, 2018, 10, 17318-17326.	2.8	45
213	PdAu Alloy Nanoparticles for Ethanol Oxidation in Alkaline Conditions: Enhanced Activity and C1 Pathway Selectivity. ACS Applied Energy Materials, 2019, 2, 8701-8706.	2.5	45
214	Pseudocapacitive NiO Fine Nanoparticles for Supercapacitor Reactions. Journal of the Electrochemical Society, 2012, 159, A1598-A1603.	1.3	44
215	Electrooxidation of Methanol at SnO _{<i>x</i>} â€"Pt Interface: A Tunable Activity of Tin Oxide Nanoparticles. Journal of Physical Chemistry Letters, 2012, 3, 3286-3290.	2.1	44
216	Thermal radiation shielded, high strength, fire resistant fiber/nanorod/aerogel composites fabricated by in-situ growth of TiO2 nanorods for thermal insulation. Chemical Engineering Journal, 2021, 418, 129342.	6.6	44

#	Article	IF	Citations
217	Topologically protected oxygen redox in a layered manganese oxide cathode for sustainable batteries. Nature Sustainability, 2022, 5, 214-224.	11.5	44
218	Layered-rocksalt intergrown cathode for high-capacity zero-strain battery operation. Nature Communications, 2021, 12, 2348.	5.8	43
219	Embossed TiO ₂ Thin Films with Tailored Links between Hollow Hemispheres: Synthesis and Gas-Sensing Properties. Journal of Physical Chemistry C, 2011, 115, 9993-9999.	1.5	42
220	Shape-Controlled Narrow-Gap SnTe Nanostructures: From Nanocubes to Nanorods and Nanowires. Journal of the American Chemical Society, 2015, 137, 15074-15077.	6.6	42
221	Chemical Synthesis of Magnetically Hard and Strong Rare Earth Metal Based Nanomagnets. Angewandte Chemie - International Edition, 2019, 58, 602-606.	7.2	42
222	Large-scale and ultra-low thermal conductivity of ZrO2 fibrofelt/ZrO2-SiO2 aerogels composites for thermal insulation. Ceramics International, 2018, 44, 8742-8748.	2.3	41
223	Cu-Catalyzed Synthesis of CdZnSe–CdZnS Alloy Quantum Dots with Highly Tunable Emission. Chemistry of Materials, 2019, 31, 2635-2643.	3.2	41
224	Engineering nano-composite Li4Ti5O12 anodes via scanning electron-probe fabrication. Nano Energy, 2013, 2, 343-350.	8.2	40
225	Influence of crystal structure on the electrochemical performance of A-site-deficient Sr _{1â^'s} Nb _{0.1} Co _{0.9} O _{3â^'Î} perovskite cathodes. RSC Advances, 2014, 4, 40865-40872.	1.7	40
226	A self-purifying electrolyte enables high energy Li ion batteries. Energy and Environmental Science, 2022, 15, 3331-3342.	15.6	40
227	Size-dependent kinetics during non-equilibrium lithiation of nano-sized zinc ferrite. Nature Communications, 2019, 10, 93.	5.8	39
228	Tensile-strained ruthenium phosphide by anion substitution for highly active and durable hydrogen evolution. Nano Energy, 2020, 77, 105212.	8.2	39
229	Hierarchical Polyelemental Nanoparticles as Bifunctional Catalysts for Oxygen Evolution and Reduction Reactions. Advanced Energy Materials, 2020, 10, 2001119.	10.2	39
230	Engineering Atomically Dispersed FeN ₄ Active Sites for CO ₂ Electroreduction. Angewandte Chemie, 2021, 133, 1035-1045.	1.6	39
231	Excess lithium storage and charge compensation in nanoscale Li _{4+<i>x</i>} Ti ₅ O ₁₂ . Nanotechnology, 2013, 24, 424006.	1.3	37
232	A new strategy to synthesize anisotropic SmCo ₅ nanomagnets. Nanoscale, 2018, 10, 8735-8740.	2.8	37
233	NbOx nano-nail with a Pt head embedded in carbon as a highly active and durable oxygen reduction catalyst. Nano Energy, 2020, 69, 104455.	8.2	37
234	Promotional Effects of Bismuth on the Formation of Platinumâ'Bismuth Nanowires Network and the Electrocatalytic Activity toward Ethanol Oxidation. Crystal Growth and Design, 2011, 11, 594-599.	1.4	36

#	Article	IF	Citations
235	Gradient structure high emissivity MoSi2-SiO2-SiOC coating forÂthermal protective application. Journal of Alloys and Compounds, 2017, 703, 437-447.	2.8	36
236	Hydrothermal growth of 3D graphene on nickel foam as a substrate of nickel-cobalt-sulfur for high-performance supercapacitors. Journal of Alloys and Compounds, 2018, 732, 613-623.	2.8	36
237	Imaging the kinetics of anisotropic dissolution of bimetallic core–shell nanocubes using graphene liquid cells. Nature Communications, 2020, 11, 3041.	5.8	36
238	B-site doping effect on ferroelectric property of bismuth titanate ceramic. Journal of Applied Physics, 2005, 98, 114104.	1.1	35
239	Different domain structures and their effects on fatigue behavior in Bi3TiTaO9 and SrBi2Ta2O9 ceramics. Journal of Applied Physics, 2003, 93, 4784-4787.	1.1	34
240	Synthesis and Characterization of Nanocomposites with Strong Interfacial Interaction: Sulfated ZrO ₂ Nanoparticles Supported on Multiwalled Carbon Nanotubes. Journal of Physical Chemistry C, 2012, 116, 21742-21752.	1.5	33
241	Pt Monolayer Shell on Nitrided Alloy Core—A Path to Highly Stable Oxygen Reduction Catalyst. Catalysts, 2015, 5, 1321-1332.	1.6	33
242	High-performance layered NiCo2S4@rGO/rGO film electrode for flexible electrochemical energy storage. Electrochimica Acta, 2019, 328, 135088.	2.6	33
243	Effect of SiO2 deposition on thermal stability of Al2O3-SiO2 aerogel. Journal of the European Ceramic Society, 2021, 41, 580-589.	2.8	33
244	Rhombohedral Pd–Sb Nanoplates with Pdâ€Terminated Surface: An Efficient Bifunctional Fuelâ€Cell Catalyst. Advanced Materials, 2022, 34, .	11.1	33
245	Core–shell catalysts consisting of nanoporous cores for oxygen reduction reaction. Physical Chemistry Chemical Physics, 2013, 15, 15078.	1.3	32
246	Effect of Carbon and Binder on High Sulfur Loading Electrode for Li-S Battery Technology. Electrochimica Acta, 2017, 235, 399-408.	2.6	32
247	Electric field tuned crossover from classical to weakly localized quantum transport in electron doped <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	n> <mark>3</mark> :{/mml	:mn>
248	Platinum Monolayer on IrFe Core–Shell Nanoparticle Electrocatalysts for the Oxygen Reduction Reaction. Electrocatalysis, 2011, 2, 134-140.	1.5	31
249	Bandâ€Gap Engineering at a Semiconductor–Crystalline Oxide Interface. Advanced Materials Interfaces, 2015, 2, 1400497.	1.9	31
250	Elucidating the Sole Contribution from Electromagnetic Nearâ€Fields in Plasmonâ€Enhanced Cu ₂ O Photocathodes. Advanced Energy Materials, 2016, 6, 1501250.	10.2	31
251	Enhanced Electrokinetics of Câ^'C Bond Splitting during Ethanol Oxidation by using a Pt/Rh/Sn Catalyst with a Partially Oxidized Pt and Rh Core and a SnO ₂ Shell. ChemCatChem, 2016, 8, 2876-2880.	1.8	31
252	Highly Dispersed Platinum Atoms on the Surface of AuCu Metallic Aerogels for Enabling H ₂ O ₂ Production. ACS Applied Energy Materials, 2019, 2, 7722-7727.	2.5	31

#	Article	IF	CITATIONS
253	Atomically Dispersed Iron Cathode Catalysts Derived from Binary Ligand-Based Zeolitic Imidazolate Frameworks with Enhanced Stability for PEM Fuel Cells. Journal of the Electrochemical Society, 2019, 166, F3116-F3122.	1.3	31
254	<i>In Situ</i> Electron Microscopy Investigation of Sodiation of Titanium Disulfide Nanoflakes. ACS Nano, 2019, 13, 9421-9430.	7.3	30
255	Tungstenâ€Doped L1 0 â€PtCo Ultrasmall Nanoparticles as a Highâ€Performance Fuel Cell Cathode. Angewandte Chemie, 2019, 131, 15617-15623.	1.6	30
256	Site-Specific Sodiation Mechanisms of Selenium in Microporous Carbon Host. Nano Letters, 2020, 20, 918-928.	4.5	30
257	La-doped effect on the ferroelectric properties of Bi4Ti3O12–SrBi4Ti4O15 thin film fabricated by pulsed laser deposition. Journal of Applied Physics, 2002, 92, 5420-5424.	1.1	29
258	Phase separation induced macroporous SiOC ceramics derived from polysiloxane. Journal of the European Ceramic Society, 2015, 35, 443-450.	2.8	29
259	Improvement of Li-S battery electrochemical performance with 2D TiS2 additive. Electrochimica Acta, 2018, 292, 779-788.	2.6	29
260	Polaron absorption for photovoltaic energy conversion in a manganite-titanate <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="bold-italic">pn</mml:mi></mml:mrow></mml:math> heterojunction. Physical Review B, 2012, 85, .	1.1	28
261	Effect of Electrolyte on High Sulfur Loading Li-S Batteries. Journal of the Electrochemical Society, 2018, 165, A416-A423.	1.3	28
262	Effect of glass phase content on structure and properties of gradient MoSi 2 –BaO–Al 2 O 3 –SiO 2 coating for porous fibrous insulations. Journal of Alloys and Compounds, 2016, 657, 684-690.	2.8	27
263	Large-diameter and heteroatom-doped graphene nanotubes decorated with transition metals as carbon hosts for lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 13389-13399.	5.2	27
264	Shielded SnS2/SnS heterostructures on three-dimensional graphene framework for high-rate and stable sodium-ion storage. Electrochimica Acta, 2021, 372, 137800.	2.6	27
265	Exceptional activity of sub-nm Pt clusters on CdS for photocatalytic hydrogen production: a combined experimental and first-principles study. Catalysis Science and Technology, 2015, 5, 2059-2064.	2.1	26
266	Development of a water cycle management approach to Sponge City construction in Xi'an, China. Science of the Total Environment, 2019, 685, 490-496.	3.9	26
267	The atomic structure and polarization of strained SrTiO3/Si. Applied Physics Letters, 2010, 97, 251902.	1.5	25
268	Biphase Cobalt–Manganese Oxide with High Capacity and Rate Performance for Aqueous Sodiumâ€lon Electrochemical Energy Storage. Advanced Functional Materials, 2018, 28, 1703266.	7.8	25
269	Near-room temperature ferromagnetic insulating state in highly distorted LaCoO2.5 with CoO5 square pyramids. Nature Communications, 2021, 12, 1853.	5.8	25
270	Moir \tilde{A} \otimes Fringe Method via Scanning Transmission Electron Microscopy. Small Methods, 2022, 6, e2101040.	4.6	25

#	Article	IF	Citations
271	Structural and dielectric properties of strain-controlled epitaxial SrTiO3 thin films by two-step growth technique. Journal of Applied Physics, 2005, 98, 054105.	1.1	24
272	Fabrication of silicon oxycarbide fibers from alkoxide solutions along the sol–gel process. Journal of Sol-Gel Science and Technology, 2010, 56, 184-190.	1.1	24
273	Strong growth orientation dependence of strain relaxation in epitaxial (Ba,Sr)TiO3 films and the resulting dielectric properties. Journal of Applied Physics, 2011, 109, .	1.1	24
274	Highly Ordered TiO ₂ Nanotubes on Patterned Substrates: Synthesis-in-Place for Ultrasensitive Chemiresistors. Journal of Physical Chemistry C, 2013, 117, 17824-17831.	1.5	24
275	Heterojunction nanowires having high activity and stability for the reduction of oxygen: Formation by self-assembly of iron phthalocyanine with single walled carbon nanotubes (FePc/SWNTs). Journal of Colloid and Interface Science, 2014, 419, 61-67.	5.0	24
276	Strain and Stability of Ultrathin Ge Layers in Si/Ge/Si Axial Heterojunction Nanowires. Nano Letters, 2015, 15, 1654-1659.	4.5	24
277	Atomic scale deposition of Pt around Au nanoparticles to achieve much enhanced electrocatalysis of Pt. Nanoscale, 2017, 9, 7745-7749.	2.8	24
278	Methyl modified SiO2 aerogel with tailored dual modal pore structure for adsorption of organic solvents. Materials Letters, 2019, 238, 202-205.	1.3	24
279	The interaction of electromagnetic wave and plasma wave in an electron beam-ion channel system. Physics of Plasmas, 2011, 18, .	0.7	23
280	Preparation and characterization of continuous SiZrOC fibers by polyvinyl pyrrolidone-assisted sol–gel process. Journal of Materials Science, 2016, 51, 1418-1427.	1.7	23
281	A Flexible Film with SnS ₂ Nanoparticles Chemically Anchored on 3Dâ€Graphene Framework for High Areal Density and High Rate Sodium Storage. Small, 2020, 16, e2001265.	5.2	23
282	Mechanical and dielectric relaxation in neodymium-modified bismuth titanate ceramics. Solid State Communications, 2004, 131, 189-193.	0.9	22
283	Pseudocapacitive Hausmannite Nanoparticles with (101) Facets: Synthesis, Characterization, and Charge†ransfer Mechanism. ChemSusChem, 2013, 6, 1983-1992.	3.6	22
284	Fabrication and toughening behavior of carbon nanotube (CNT) scaffold reinforced SiBCN ceramic composites with high CNT loading. Ceramics International, 2017, 43, 9024-9031.	2.3	22
285	Correlating the electrocatalytic stability of platinum monolayer catalysts with their structural evolution in the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 20725-20736.	5.2	22
286	The Impact of chemical ordering on the dielectric properties of lead scandium tantalate Pb(Sc1â•2Ta1â•2)O3 thin films. Journal of Applied Physics, 2007, 102, .	1.1	21
287	Exchange bias effect in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mtext>Au-Fe</mml:mtext>O<mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:math> dumbbell nanoparticles induced by the charge transfer from gold. Physical Review B. 2015, 92	t> <mml:m< td=""><td>in>3</td></mml:m<>	in>3
288	Ultra-high-performance core–shell structured Ru@Pt/C catalyst prepared by a facile pulse electrochemical deposition method. Scientific Reports, 2015, 5, 11604.	1.6	21

#	Article	IF	CITATIONS
289	Development of a New Generation of Stable, Tunable, and Catalytically Active Nanoparticles Produced by the Helium Nanodroplet Deposition Method. Journal of Physical Chemistry Letters, 2016, 7, 2910-2914.	2.1	21
290	Expanded lithiation of titanium disulfide: Reaction kinetics of multi-step conversion reaction. Nano Energy, 2019, 63, 103882.	8.2	21
291	Dynamically Unveiling Metal–Nitrogen Coordination during Thermal Activation to Design Highâ€Efficient Atomically Dispersed CoN ₄ Active Sites. Angewandte Chemie, 2021, 133, 9602-9612.	1.6	21
292	Structural Changes of Intermetallic Catalysts under Reaction Conditions. Small Structures, 2021, 2, 2100011.	6.9	21
293	Localizedâ€domains staging structure and evolution in lithiated graphite. , 2023, 5, .		21
294	Ferroelectric properties of polycrystalline bismuth titanate films by Nd3+/W6+ cosubstitution. Journal of Applied Physics, 2005, 97, 084102.	1.1	20
295	Cationic–anionic redox couple gradient to immunize against irreversible processes of Li-rich layered oxides. Journal of Materials Chemistry A, 2021, 9, 2325-2333.	5.2	20
296	On the dehydration mechanism of Mg(OH)2 by a high-energy electron beam. Journal of Applied Physics, 2008, 104 , .	1.1	19
297	Metalizing carbon nanotubes with Pd–Pt core–shell nanowires enhances electrocatalytic activity and stability in the oxygen reduction reaction. Journal of Solid State Electrochemistry, 2014, 18, 1171-1179.	1.2	19
298	Characterization of 3D interconnected microstructural network in mixed ionic and electronic conducting ceramic composites. Nanoscale, 2014, 6, 4480.	2.8	19
299	High thermal stability of SiO2–ZrO2 aerogels using solvent-thermal aging. Journal of Solid State Chemistry, 2020, 291, 121624.	1.4	19
300	Photocatalytic properties of TiO2 supported on SBA-15 mesoporous materials with large pores and short channels. Materials Letters, 2011, 65, 3354-3357.	1.3	18
301	Novel photocatalytic applications of sub-nanometer gold particles for environmental liquid and gas phase reactions. Applied Catalysis B: Environmental, 2011, 104, 239-244.	10.8	18
302	Do Eu dopants prefer the precipitated LaF ₃ nanocrystals in glass ceramics?. Physica Status Solidi - Rapid Research Letters, 2012, 6, 487-489.	1.2	18
303	Fuel Cell Performance of Palladium-Platinum Core-Shell Electrocatalysts Synthesized in Gram-Scale Batches. Journal of the Electrochemical Society, 2016, 163, F708-F713. Engineered Unique Elastic Modes at a <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.3</td><td>18</td></mml:math>	1.3	18
304	display="inline"> <mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow< td=""><td>Tj_ETQq0</td><td>0 0 rgBT /Ov</td></mml:mrow<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow>	Tj_ETQq0	0 0 rgBT /Ov
305	Reversible Flat to Rippling Phase Transition in Fe Containing Layered Battery Electrode Materials. Advanced Functional Materials, 2018, 28, 1803896.	7.8	18
306	Electrolyte Concentration Effect on Sulfur Utilization of Li-S Batteries. Journal of the Electrochemical Society, 2019, 166, A50-A58.	1.3	18

#	Article	IF	Citations
307	In Operando Visualization of Cation Disorder Unravels Voltage Decay in Niâ€Rich Cathodes. Small Methods, 2021, 5, e2000730.	4.6	18
308	Nanostructured electrodes for organic bulk heterojunction solar cells: Model study using carbon nanotube dispersed polythiophene-fullerene blend devices. Journal of Applied Physics, 2011, 110, .	1.1	17
309	Controlling the Particle Size of ZrO ₂ Nanoparticles in Hydrothermally Stable ZrO ₂ /MWCNT Composites. Langmuir, 2012, 28, 17159-17167.	1.6	17
310	Synthesis and Characterization of Ethyleneâ€Bridged Copolycarbosilazane as Precursors for Silicon Carbonitride Ceramics. Journal of the American Ceramic Society, 2014, 97, 1311-1316.	1.9	17
311	Continuous sol–gel derived SiOC/HfO ₂ fibers with high strength. RSC Advances, 2015, 5, 35026-35032.	1.7	17
312	High acid resistant SiOC ceramic membranes for wastewater treatment. Ceramics International, 2018, 44, 13444-13448.	2.3	17
313	Internal friction study on low-temperature phase transitions in lead zirconate titanate ferroelectric ceramics. Applied Physics Letters, 2003, 82, 109-111.	1.5	16
314	Structure and Activity of Novel Pt Core-Shell Catalysts for the Oxygen Reduction Reaction. ECS Transactions, 2009, 25, 1023-1036.	0.3	16
315	Storage of Potassium Ions in Layered Vanadium Pentoxide Nanofiber Electrodes for Aqueous Pseudocapacitors. ChemSusChem, 2013, 6, 2231-2235.	3.6	16
316	Preparation of SiOC/HfO2 fibers from silicon alkoxides and tetrachloride hafnium by a sol–gel process. Materials Letters, 2015, 148, 196-199.	1.3	16
317	Morphology and mobility of 90° domains in La-substituted bismuth titanate. Journal of Physics Condensed Matter, 2004, 16, 4549-4556.	0.7	15
318	Tetrahedral Palladium Nanocrystals: AÂNew Support for Platinum Monolayer Electrocatalysts with High Activity and Stability in the Oxygen Reduction Reaction. Zeitschrift Fur Physikalische Chemie, 2012, 226, 1025-1038.	1.4	15
319	Comparative study of the alloying effect on the initial oxidation of Cu-Au(100) and Cu-Pt(100). Applied Physics Letters, 2014, 104, 121601.	1.5	15
320	NixWO2.72 nanorods as an efficient electrocatalyst for oxygen evolution reaction. Green Energy and Environment, 2017, 2, 119-123.	4.7	15
321	Quinary Defect-Rich Ultrathin Bimetal Hydroxide Nanosheets for Water Oxidation. ACS Applied Materials & Defect-Rich Ultrathin Bimetal Hydroxide Nanosheets for Water Oxidation. ACS Applied Materials & Defect-Rich Ultrathin Bimetal Hydroxide Nanosheets for Water Oxidation. ACS Applied Materials & Defect-Rich Ultrathin Bimetal Hydroxide Nanosheets for Water Oxidation. ACS Applied Materials & Defect-Rich Ultrathin Bimetal Hydroxide Nanosheets for Water Oxidation. ACS Applied Materials & Defect-Rich Ultrathin Bimetal Hydroxide Nanosheets for Water Oxidation. ACS Applied Materials & Defect-Rich Ultrathin Bimetal Hydroxide Nanosheets for Water Oxidation. ACS Applied Materials & Defect-Rich Ultrathin Bimetal Hydroxide Nanosheets for Water Oxidation. ACS Applied Materials & Defect-Rich Ultrathin Bimetal Hydroxide Nanosheets for Water Oxidation. ACS Applied Materials & Defect-Rich Ultrathin Bimetal Hydroxide Nanosheets for Water Oxidation. ACS Applied Materials & Defect-Rich Ultrathin Bimetal Hydroxide Nanosheets for Water Oxidation ACS Applied Nanosheets for Water Oxidation Account Nanosheet Nanosh	4.0	15
322	Direct Observation of Defectâ€Aided Structural Evolution in a Nickelâ€Rich Layered Cathode. Angewandte Chemie, 2020, 132, 22276-22283.	1.6	15
323	Non-equilibrium insertion of lithium ions into graphite. Journal of Materials Chemistry A, 2021, 9, 12080-12086.	5.2	15
324	Annealing effect on dislocations in SrTiO3â^•LaAlO3 heterostructures. Journal of Applied Physics, 2007, 101, 064102.	1.1	14

#	Article	IF	Citations
325	Reactive ion etching: Optimized diamond membrane fabrication for transmission electron microscopy. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, 06FF01.	0.6	14
326	Electrically coupling complex oxides to semiconductors: A route to novel material functionalities. Journal of Materials Research, 2017, 32, 249-259.	1.2	14
327	Tuning epitaxial growth on NaYbF ₄ upconversion nanoparticles by strain management. Nanoscale, 2020, 12, 13973-13979.	2.8	14
328	Revealing Reaction Pathways of Collective Substituted Iron Fluoride Electrode for Lithium Ion Batteries. ACS Nano, 2020, 14, 10276-10283.	7.3	14
329	On the irreversible sodiation of tin disulfide. Nano Energy, 2021, 79, 105458.	8.2	14
330	Transmission electron microscopy study on domain structures in Bi3TiNbO9 ceramics. Microelectronic Engineering, 2003, 66, 825-829.	1.1	13
331	Processing and properties of ferroelectric relaxor lead scandium tantalate Pb(Sc1/2Ta1/2)O3 thin films. Journal of Materials Research, 2007, 22, 217-232.	1.2	13
332	Volume plasmon of bismuth nanoparticles. Solid State Communications, 2009, 149, 111-114.	0.9	13
333	Growth-mode induced defects in epitaxial SrTiO ₃ thin films grown on single crystal LaAlO ₃ by a two-step PLD process. Journal of Materials Research, 2011, 26, 770-774.	1.2	13
334	Ultrathin and stable AgAu alloy nanowires. Science China Materials, 2015, 58, 595-602.	3.5	13
335	Improvement of thermal stability of ZrO2–SiO2 aerogels by an inorganic–organic synergetic surface modification. Journal of Porous Materials, 2017, 24, 657-665.	1.3	13
336	Zn-air Batteries: Interpenetrating Triphase Cobalt-Based Nanocomposites as Efficient Bifunctional Oxygen Electrocatalysts for Long-Lasting Rechargeable Zn-Air Batteries (Adv. Energy Mater. 15/2018). Advanced Energy Materials, 2018, 8, 1870068.	10.2	13
337	Dual-stage K ⁺ ion intercalation in V ₂ O ₅ -conductive polymer composites. Journal of Materials Chemistry A, 2021, 9, 15629-15636.	5.2	13
338	Electron energy loss spectroscopy of Na in Na, Na ₂ 0, and silicate glasses. Journal of Materials Research, 2008, 23, 2467-2471.	1.2	12
339	Interfacial structure in epitaxial perovskite oxides on (001) Ge crystal. Applied Physics Letters, 2015, 106, .	1.5	11
340	Nanoscale Origins of Ferroelastic Domain Wall Mobility in Ferroelectric Multilayers. ACS Nano, 2016, 10, 10126-10134.	7.3	11
341	A laminated carbon nanotubes/silicon boron carbonitride film for high-efficiency electromagnetic interference shielding with oxidation resistance. Carbon, 2022, 197, 65-75.	5.4	11
342	In-plane versus out-of-plane dielectric response in the thin-film relaxorPb(Sc1a^•2Ta1a^•2)O3. Physical Review B, 2006, 73, .	1.1	10

#	Article	IF	CITATIONS
343	Bifunctional Ag@SiO 2 /Au Nanoparticles for Probing Sequential Catalytic Reactions by Surfaceâ€Enhanced Raman Spectroscopy. ChemNanoMat, 2017, 3, 245-251.	1.5	10
344	Core–shell-structured Li ₃ V ₂ (PO ₄) ₃ –LiVOPO ₄ nanocomposites cathode for high-rate and long-life lithium-ion batteries. RSC Advances, 2017, 7, 3101-3107.	1.7	9
345	Tuning metal-insulator behavior in LaTiO3/SrTiO3 heterostructures integrated directly on Si(100) through control of atomic layer thickness. Applied Physics Letters, 2018, 112, .	1.5	9
346	Chemical Synthesis of Magnetically Hard and Strong Rare Earth Metal Based Nanomagnets. Angewandte Chemie, 2019, 131, 612-616.	1.6	9
347	High-temperature-pulse synthesis of ultrathin-graphene-coated metal nanoparticles. Nano Energy, 2021, 80, 105536.	8.2	9
348	Dynamics of Anisotropic Oxygen-lon Migration in Strained Cobaltites. Nano Letters, 2021, 21, 10507-10515.	4.5	9
349	Sodium reconstruction on surface of silicate glasses in transmission electron microscope. Applied Physics Letters, 2007, 91, .	1.5	8
350	Highly Dispersed Carbon Supported PdNiMo Core with Pt Monolayer Shell Electrocatalysts for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2018, 165, J3295-J3300.	1.3	8
351	Highly Efficient AuPd Catalyst for Synthesizing Polybenzoxazole with Controlled Polymerization. Matter, 2019, 1, 1631-1643.	5. O	8
352	Comparison of Mg L23 edges in MgO and Mg(OH)2—Importance of medium-range structure. Ultramicroscopy, 2008, 109, 122-128.	0.8	7
353	Tri- and quadri-metallic ultrathin nanowires synthesized by one-step phase-transfer approach. Nanotechnology, 2009, 20, 495605.	1.3	7
354	Microstructure and electronic behavior of PtPd@Pt core-shell nanowires. Journal of Materials Research, 2010, 25, 711-717.	1.2	7
355	Valence electron energy-loss spectroscopy of ultrathin SrTiO3 films grown on silicon (100) single crystal. Applied Physics Letters, 2010, 96, .	1.5	7
356	Influence of Epitaxial Growth Orientation on Residual Strain and Dielectric Properties of (Ba _{0.3} Sr _{0.7})TiO ₃ Films Grown on In-Plane Compressive Substrates. Ferroelectrics, 2010, 405, 262-267.	0.3	7
357	Kernâ€Schaleâ€Strukturierung rein metallischer Aerogele für eine hocheffiziente Nutzung von Platin für die Sauerstoffreduktion. Angewandte Chemie, 2018, 130, 3014-3018.	1.6	7
358	Fuel Cells: Tailoring FeN ₄ Sites with Edge Enrichment for Boosted Oxygen Reduction Performance in Proton Exchange Membrane Fuel Cell (Adv. Energy Mater. 11/2019). Advanced Energy Materials, 2019, 9, 1970031.	10.2	7
359	Understanding the structural dynamics of electrocatalysts via liquid cell transmission electron microscopy. Current Opinion in Electrochemistry, 2022, 33, 100936.	2.5	7
360	Ensemble Machineâ€Learningâ€Based Analysis for In Situ Electron Diffraction. Advanced Theory and Simulations, 2022, 5, .	1.3	7

#	Article	IF	CITATIONS
361	Valence electron energy-loss spectroscopy of nanoporous MgO. Applied Physics Letters, 2009, 94, 253105.	1.5	6
362	On the measurement of thickness in nanoporous materials by EELS. Ultramicroscopy, 2010, 111, 62-65.	0.8	6
363	The first experimental demonstration of beneficial effects of sub-nanometer platinum particles for photocatalysis. Chemical Engineering Journal, 2013, 217, 266-272.	6.6	6
364	Chemical strain-dependent two-dimensional transport at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>R</mml:mi><mml:msub><mml:mterfaces <mml:math<="" td=""><td>ext>AlO<!--</td--><td>mml:mtext></td></td></mml:mterfaces></mml:msub></mml:mrow></mml:math>	ext>AlO </td <td>mml:mtext></td>	mml:mtext>

#	Article	IF	CITATIONS
379	Comment on "Model of phase transition induced antiphase boundaries in perovskite and layered perovskite oxides―[J. Appl. Phys.92, 5425 (2002)]. Journal of Applied Physics, 2004, 95, 770-771.	1.1	3
380	Zinc–Air Batteries: An Oxygenâ€Vacancyâ€Rich Semiconductorâ€Supported Bifunctional Catalyst for Efficient and Stable Zinc–Air Batteries (Adv. Mater. 6/2019). Advanced Materials, 2019, 31, 1970043.	11.1	3
381	Real Time Observation of Lithium Insertion into Pre-Cycled Conversion-Type Materials. Nanomaterials, 2021, 11, 728.	1.9	3
382	Comparison of Co3O4 and CoO Nanoparticles as Anodes for Lithium-ion Batteries. Microscopy and Microanalysis, 2015, 21, 477-478.	0.2	2
383	Contrasting Reaction Modality between Electrochemical Sodiation and Lithiation in NiO Conversion Electrode Materials. Microscopy and Microanalysis, 2015, 21, 325-326.	0.2	2
384	Stacking Fault Formation via 2D Nucleation in PVT Grown 4H-SiC. Materials Science Forum, 0, 821-823, 85-89.	0.3	2
385	Strain Coupling of Conversionâ€type Fe 3 O 4 Thin Films for Lithium Ion Batteries. Angewandte Chemie, 2017, 129, 7921-7924.	1.6	2
386	Interfacial dislocations in (111) oriented (Ba0.7Sr0.3)TiO3films on SrTiO3single crystal. Applied Physics Letters, 2015, 107, 141605.	1.5	2
387	Electron-Beam-Induced Structure transition in spinel Li4Ti5O12. Microscopy and Microanalysis, 2012, 18, 1488-1489.	0.2	1
388	TEM Characterization of Metallic Nanocatalysts. , 2014, , 577-618.		1
389	Discovering a Novel Sodiation in FeF2 Electrodes for Sodium-Ion Batteries. Microscopy and Microanalysis, 2014, 20, 490-491.	0.2	1
390	A Model Based Method for Tomographic Reconstructions of Nanoparticle Assemblies. Microscopy and Microanalysis, 2014, 20, 808-809.	0.2	1
391	Development of Quantitative STEM for a Conventional S/TEM and Real-Time Current Calibration for Performing QSTEM with a Cold Field Emission Gun. Microscopy and Microanalysis, 2015, 21, 2127-2128.	0.2	1
392	Direct Visualization of Lithium Intercalation in Spinel Iron Oxide by In-Situ Bright-Field Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2016, 22, 760-761.	0.2	1
393	STEM/EELS Analysis of Li(Ni 0.8 Co 0.15 Al 0.05)O 2 Held at High Voltages. Microscopy and Microanalysis, 2016, 22, 1306-1307.	0.2	1
394	Local electric field direct writing – Electron-beam lithography and mechanism. Microelectronic Engineering, 2017, 182, 8-14.	1.1	1
395	Panoramic Visualization of Lithiation of Copper Sulfide by In Situ STEM. Microscopy and Microanalysis, 2018, 24, 1498-1499.	0.2	1
396	Crystallization kinetics and thermal stability of ZrO2 monolithic aerogel improved by SiO2 layer. Integrated Ferroelectrics, 2018, 191, 145-150.	0.3	1

#	Article	IF	Citations
397	Superconducting epitaxial \$\$hbox {YBa}_{2}hbox {Cu}_{3}hbox {O}_{7-delta}\$\$ YBa 2 Cu 3 O 7. Bulletin of Materials Science, 2018, 41, 1.	0.8	1
398	Rücktitelbild: A Singleâ€Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction (Angew.) Tj ETQo	q0 0.0 rgB	T /Overlock 1
399	10.1063/1.4870085.1., 2014, , .		1
400	Enhancing CO Oxidation Activity <i>via</i> Tuning a Charge Transfer Between Gold Nanoparticles and Supports. Journal of Physical Chemistry C, 2022, 126, 4836-4844.	1.5	1
401	Microstructure study of Bi/sub 4/Ti/sub 3/O/sub 12/-SrBi/sub 4/O/sub 15/ and Bi/sub 3.25/La/sub 0.75/Ti/sub 3/O/sub 12/-SrBi/sub 4/Ti/sub 4/O/sub 15/ ceramics. , 0, , .		0
402	Structural and Ferroelectric Properties of Bi4â^2xYxTi3O12 Films. Integrated Ferroelectrics, 2004, 65, 105-115.	0.3	0
403	Internal Friction Study of Neodymium-Modified Bismuth Titanate Ceramic. Integrated Ferroelectrics, 2004, 65, 213-223.	0.3	0
404	Strain Relaxation and Dislocation Confinement in Epitaxial SrTiO3 by Two-Step Growth Technique and the Resulting Dielectric Response. Materials Research Society Symposia Proceedings, 2005, 902, 1.	0.1	0
405	A NEW MICROSCOPIC MECHANISM FOR FATIGUE BEHAVIOR IN BISMUTH LAYER STRUCTURE FERROELECTRICS. Integrated Ferroelectrics, 2006, 79, 273-280.	0.3	0
406	Oxygen Bonding in Bismuth Layered Compounds SrBi2Ta2O9. Materials Research Society Symposia Proceedings, 2007, 997, 1.	0.1	0
407	Oxide Surface Crystallography in Electron Microscopy. Microscopy and Microanalysis, 2011, 17, 1084-1085.	0.2	0
408	Domain Pinning and Valence State Switching in Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3 Heterostructures. Microscopy and Microanalysis, 2011, 17, 1400-1401.	0.2	0
409	Experimental study of resistive bistability in metal oxide junctions. Applied Physics A: Materials Science and Processing, 2011, 103, 293-300.	1.1	0
410	High-resolution characterization of activated graphene for supercapacitor applications. Microscopy and Microanalysis, 2012, 18, 1536-1537.	0.2	0
411	Probing the Local Chemical and Structural Ordering of Iron Oxyfluoride. Microscopy and Microanalysis, 2014, 20, 430-431.	0.2	0
412	Interfacial Structure in Epitaxial Perovskite Oxides on (001) Ge Crystal. Microscopy and Microanalysis, 2015, 21, 1301-1302.	0.2	0
413	Revealing Near-Surface to Interior Redox upon Lithiation in Conversion Electrode Materials Using Electron Microscopy. Microscopy and Microanalysis, 2015, 21, 1369-1370.	0.2	0
414	Investigation of the Structural and Electronic Properties of Pt/\hat{I}^3 -Al2O3, a Model Catalyst System. Microscopy and Microanalysis, 2015, 21, 1655-1656.	0.2	0

#	Article	IF	CITATIONS
415	EELS Analysis Of Lithiation/Delithiation Reactions In LiFePO4. Microscopy and Microanalysis, 2015, 21, 331-332.	0.2	0
416	Development of Real-Time Probe Current Calibration for Performing Quantitative STEM with a Cold Field-Emission Gun Microscopy and Microanalysis, 2016, 22, 940-941.	0.2	0
417	Electrically Coupling Multifunctional Oxides to Semiconductors: A Route to Novel Material Functionalities. MRS Advances, 2016, 1, 255-263.	0.5	0
418	Pt-based catalysts with tensile surface strain to boost activity. Fuel Cells Bulletin, 2017, 2017, 14.	0.7	0
419	In-situ Investigation of Multi-Step Lithiation of Tin Sulfide. Microscopy and Microanalysis, 2018, 24, 1864-1865.	0.2	0
420	Single Atom Identification of Barium by HAADF-STEM for the New Enriched Xenon Observatory (nEXO). Microscopy and Microanalysis, 2019, 25, 670-671.	0.2	0
421	In-situ TEM Investigation on Reaction Mechanisms of Conversion Electrode Materials for Batteries. Microscopy and Microanalysis, 2019, 25, 1434-1435.	0.2	0
422	Multimodal Analysis of Reaction Pathways of Cathode Materials for Lithium Ion Batteries. Microscopy and Microanalysis, 2020, 26, 906-908.	0.2	0
423	In-situ TEM Investigation of Lithiation and Sodiation of 2D Metal Sulfides. Microscopy and Microanalysis, 2020, 26, 1098-1100.	0.2	0
424	Reversible Flat to Rippling Phase Transition in Fe Containing Layered Battery Electrode Materials. Advanced Functional Materials, 2018, 28, .	7.8	0