
Norazura Muhamad Bunnori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3315347/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical characteristics of PET fibre-reinforced green ultra-high performance composite concrete. European Journal of Environmental and Civil Engineering, 2022, 26, 2797-2818.	2.1	14
2	Investigation on Acoustic Emission Parameters due to Fatigue Damage of Concrete Beams with Variable Notched Depth. International Journal of Concrete Structures and Materials, 2022, 16, .	3.2	4
3	Development of engineering and transport properties of green high strength concrete utilizing ternary blended binders. European Journal of Environmental and Civil Engineering, 2021, 25, 1251-1267.	2.1	9
4	Crack assessment of RC beam–column joints subjected to cyclic lateral loading using acoustic emission (AE): the influence of shear links aspect. Canadian Journal of Civil Engineering, 2021, 48, 1274-1286.	1.3	2
5	Assessment of corroded reinforced concrete beams: Cyclic load test and acoustic emission techniques. Construction and Building Materials, 2020, 233, 117291.	7.2	13
6	Experimental Study on Shear Strengthening of Reinforced Concrete Box Beam by CFRP. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2020, 44, 1075-1085.	1.9	2
7	Acoustic and non-acoustic performance of coal bottom ash concrete as sound absorber for wall concrete. Case Studies in Construction Materials, 2020, 13, e00399.	1.7	13
8	Relationships between Compressive Strength and Transport Properties of Ultrahigh-Strength Green Concrete Utilizing Ternary-Blended Binder. Journal of Materials in Civil Engineering, 2020, 32, .	2.9	12
9	Fluid transport properties of normal concrete substrate and a new green fiber reinforced concrete overlay composite. Structural Concrete, 2019, 20, 1771-1780.	3.1	1
10	Interfacial behavior between normal substrate and green ultraâ€highâ€performance fiberâ€reinforced concrete under elevated temperatures. Structural Concrete, 2019, 20, 1896-1908.	3.1	11
11	Failure mode maps of bio-inspired sandwich beams under repeated low-velocity impact. Composites Science and Technology, 2019, 182, 107785.	7.8	27
12	Models Reviewed for Predicting CFRP Shear Contribution of Strengthened Reinforced Concrete Box Beam. KSCE Journal of Civil Engineering, 2019, 23, 3644-3659.	1.9	8
13	Bond strength of the interface between normal concrete substrate and GUSMRC repair material overlay. Construction and Building Materials, 2019, 216, 261-271.	7.2	51
14	Durability performance of a novel ultra-high-performance PET green concrete (UHPPGC). Construction and Building Materials, 2019, 209, 395-405.	7.2	76
15	Fatigue damage severity assessment of RC beam. International Journal of Structural Integrity, 2019, 10, 612-620.	3.3	3
16	Prediction of Ultimate Torque of Reinforced Concrete Box Beam Bonded with CFRP Strips. KSCE Journal of Civil Engineering, 2018, 22, 4353-4363.	1.9	6
17	Experimental investigation on effect of multi-walled carbon nanotubes concentration on flexural properties and microstructure of cement mortar composite. AIP Conference Proceedings, 2017, , .	0.4	3
18	Active crack evaluation in concrete beams using statistical analysis of acoustic emission data. Insight: Non-Destructive Testing and Condition Monitoring, 2017, 59, 24-31.	0.6	15

#	Article	IF	CITATIONS
19	Behavior of Reinforced Concrete Box Beam Strengthened with CFRP U-Wrap Strips Under Torsion. MATEC Web of Conferences, 2016, 47, 02002.	0.2	6
20	Evaluation of Ultimate Strength of Reinforced Concrete Beams Strengthened with FRP Sheets under Torsion. MATEC Web of Conferences, 2016, 47, 02006.	0.2	1
21	Retrofitting of damaged reinforced concrete beams with a new green cementitious composites material. Composite Structures, 2016, 142, 27-34.	5.8	21
22	Torsional improvement of reinforced concrete beams using ultra high-performance fiber reinforced concrete (UHPFC) jackets – Experimental study. Construction and Building Materials, 2016, 106, 533-542.	7.2	58
23	Strengthening of reinforced concrete beams subjected to torsion with UHPFC composites. Structural Engineering and Mechanics, 2015, 56, 123-136.	1.0	8
24	Finite element analysis of longitudinal reinforcement beams with UHPFC under torsion. Computers and Concrete, 2015, 16, 1-16.	0.7	1
25	Analysis of failure mechanisms in fatigue test of reinforced concrete beam utilizing acoustic emission. International Journal of Multiphysics, 2014, 8, 349-358.	0.1	2
26	Influence of palm oil fuel ash on ultimate flexural and uniaxial tensile strength of green ultra-high performance fiber reinforced cementitious composites. Materials & Design, 2014, 54, 694-701.	5.1	44
27	Diagnostic of fatigue damage severity on reinforced concrete beam using acoustic emission technique. Engineering Failure Analysis, 2014, 41, 1-9.	4.0	50
28	Seismic microzonation for Penang using geospatial contour mapping. Natural Hazards, 2014, 73, 657-670.	3.4	11
29	Crack classification in reinforced concrete beams with varying thicknesses by mean of acoustic emission signal features. Construction and Building Materials, 2013, 45, 282-288.	7.2	91
30	Evaluation of ultra-high-performance-fiber reinforced concrete binder content using the response surface method. Materials & Design, 2013, 52, 957-965.	5.1	99
31	Acoustic emission signal for fatigue crack classification on reinforced concrete beam. Construction and Building Materials, 2013, 49, 583-590.	7.2	80
32	Damage classification in reinforced concrete beam by acoustic emission signal analysis. Construction and Building Materials, 2013, 45, 78-86.	7.2	206
33	Damage evaluation of reinforced concrete beams with varying thickness using the acoustic emission technique. Construction and Building Materials, 2013, 44, 812-821.	7.2	51
34	Development of green ultra-high performance fiber reinforced concrete containing ultrafine palm oil fuel ash. Construction and Building Materials, 2013, 48, 379-389.	7.2	106
35	Damage Source Identification of Reinforced Concrete Structure Using Acoustic Emission Technique. Scientific World Journal, The, 2013, 2013, 1-5.	2.1	1
36	Applications of Acoustic Emission Technique Associated with the Fracture Process Zone in Concrete Beam – A Review. Advanced Materials Research, 2012, 626, 147-151.	0.3	5

#	Article	IF	CITATIONS
37	Classification of Damage Mode of Reinforced Concrete Beams Using Acoustic Emission Technique. Advanced Materials Research, 2012, 626, 953-957.	0.3	3
38	Analysis of the AE signals parameter at the critical area on the concrete beam. , 2012, , .		4
39	Quantitative Evaluation of the Relationship between Tensile Crack and Shear Movement in Concrete Beams. Advanced Materials Research, 2012, 626, 355-359.	0.3	20
40	An Overview Current Application of Artificial Neural Network in Concrete. Advanced Materials Research, 2012, 626, 372-375.	0.3	17
41	Engineering and transport properties of high-strength green concrete containing high volume of ultrafine palm oil fuel ash. Construction and Building Materials, 2012, 30, 281-288.	7.2	229
42	Overview of moment tensor analysis of acoustic emission signal in evaluation concrete structure. , 2011, , .		5
43	Analysis methods of Acoustic Emission signal for monitoring of reinforced concrete structure: A review. , 2011, , .		2
44	Relationship between acoustic emission signal strength and damage evaluation of reinforced concrete structure: Case studies. , 2011, , .		10
45	Damage severity evaluation on reinforced concrete beam by means of acoustic emission signal and intensity analysis. , 2011, , .		12
46	An investigation on acoustic wave velocity of reinforced concrete beam in-plane source. , 2011, , .		8
47	The use of acoustic emission for the early detection of cracking in concrete structures. Magazine of Concrete Research, 2011, 63, 683-688.	2.0	20
48	An observation of noise intervention into acoustic emission signal on concrete structure. , 2011, , .		8
49	Health Index Evaluation on Acoustic Emission Signal for Concrete Structure by Intensity Analysis Method. Advanced Materials Research, 0, 403-408, 3729-3733.	0.3	8
50	B-Value Analysis of AE Signal Subjected to Stepwise Loading. Advanced Materials Research, 0, 403-408, 4126-4131.	0.3	2
51	Characteristics of Treated Palm Oil Fuel Ash and its Effects on Properties of High Strength Concrete. Advanced Materials Research, 0, 626, 152-156.	0.3	24
52	Effects of Site Classification on Empirical Correlation between Shear Wave Velocity and Standard Penetration Resistance for Soils. Applied Mechanics and Materials, 0, 284-287, 1305-1310.	0.2	4
53	Study on Fluid Transport Properties between Normal Concrete Substrate and Green-USM-Reinforced Concrete (GUSMRC) Containing Ultra Fine Palm Oil Fuel Ash (U-POFA) as Repair Material. Applied Mechanics and Materials, 0, 802, 277-282.	0.2	2
54	Torsional behaviour of RC box beams strengthened by CFRP under combined shear and torsion. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 0, , 1-15.	0.8	2