
Hiroaki Gotoh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3315253/publications.pdf Version: 2024-02-01

HIPOAKI COTOH

#	Article	IF	CITATIONS
1	Hydrophilic oxygen radical absorbance capacity values of low-molecular-weight phenolic compounds containing carbon, hydrogen, and oxygen. RSC Advances, 2022, 12, 4094-4100.	3.6	5
2	Induced Radionuclides and Their Activity Concentration in Gel Dosimeters Irradiated by Carbon Ion Beam. Gels, 2022, 8, 203.	4.5	2
3	Mechanism for the photodegradation of 9,10-dibutoxyanthracene in the presence of air. PLoS ONE, 2022, 17, e0263526.	2.5	2
4	Structure–antioxidant activity (oxygen radical absorbance capacity) relationships of phenolic compounds. Structural Chemistry, 2022, 33, 1055-1062.	2.0	3
5	Behaviour and mechanism of micelle gel dosimeter for carbon-ion-beam irradiation. Radiation Physics and Chemistry, 2021, 179, 109191.	2.8	7
6	Prediction and Chemical Interpretation of Singlet-Oxygen-Scavenging Activity of Small Molecule Compounds by Using Machine Learning. Antioxidants, 2021, 10, 1751.	5.1	5
7	Prediction of the presence of cupping artifacts for gel dosimeter based on considerations of scattered light in optical computed tomography measurements. Radiation Measurements, 2020, 138, 106437.	1.4	2
8	Structural and electronic factors relating to the stability of imidazolidine nitroxide radicals. SDRP Journal of Computational Chemistry & Molecular Modelling, 2020, 4, 321-327.	0.3	0
9	Cause of cupping artifacts from radiochromic micelle gel dosimeters used in optical CT scanner measurement. Journal of Physics: Conference Series, 2019, 1305, 012020.	0.4	1
10	Clear micelle gel dosimeter with nanoclay. Journal of Physics: Conference Series, 2019, 1305, 012040.	0.4	3
11	Polymerization inhibition mechanism of 1,4-naphthoquinone by experimentation and DFT calculations. Polymer Journal, 2019, 51, 929-934.	2.7	5
12	Development of the radical C–O coupling reaction of phenols toward the synthesis of natural products comprising a diaryl ether skeleton. Tetrahedron, 2019, 75, 3875-3885.	1.9	9
13	Evaluation method of steric shielding effect around nitroxide radical reaction center based on molecular volume within a virtual ball. Structural Chemistry, 2019, 30, 2085-2092.	2.0	5
14	Effect of Side Chain Functional Groups on the DPPH Radical Scavenging Activity of Bisabolane-Type Phenols. Antioxidants, 2019, 8, 65.	5.1	20
15	A theoretical, dynamical evaluation method of the steric hindrance in nitroxide radicals using transition states of model reactions. Scientific Reports, 2019, 9, 20339.	3.3	11
16	Evaluation of Nitroxide Radical Catalyst Activity in C-H Activation Step of the Oxidative Coupling between 9,10-Dihydroacridine and Nitromethane. Asian Journal of Chemistry, 2019, 31, 2107-2110.	0.3	5
17	Trapping chlorine radicals via substituting nitro radicals in the gas phase. Analytical Methods, 2016, 8, 25-28.	2.7	6
18	Novel degradation mechanism for triarylmethane dyes: Acceleration of degradation speed by the attack of active oxygen to halogen groups. Dyes and Pigments, 2016, 124, 130-132.	3.7	16

#	Article	IF	CITATIONS
19	Two Reaction Mechanisms via Iminium Ion Intermediates: The Different Reactivities of Diphenylprolinol Silyl Ether and Trifluoromethylâ€Substituted Diarylprolinol Silyl Ether. Chemistry - A European Journal, 2015, 21, 12337-12346.	3.3	46
20	A Theoretical and Experimental Study of the Effects of Silyl Substituents in Enantioselective Reactions Catalyzed by Diphenylprolinol Silyl Ether. Chemistry - A European Journal, 2014, 20, 17077-17088.	3.3	54
21	Proton-conductivity-enhancing Ionic Liquid Consisting of Guanidine and Excess Trifluoromethanesulfonic Acid. Chemistry Letters, 2014, 43, 649-651.	1.3	7
22	Scavenging and Characterization of Short-Lived Radicals Using a Novel Stable Nitroxide Radical with a Characteristic UV–vis Absorption Spectrum. Organic Letters, 2014, 16, 3868-3871.	4.6	9
23	Meta Selective C-H Bond Functionalization. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2013, 71, 355-356.	0.1	1
24	6.5 C–C Bond Formation: Aldol Reaction with Non-Proline Derivatives. , 2012, , 125-156.		0
25	New Insights into the Mechanism and an Expanded Scope of the Fe(III)-Mediated Vinblastine Coupling Reaction. Journal of the American Chemical Society, 2012, 134, 13240-13243.	13.7	57
26	10′-Fluorovinblastine and 10′-Fluorovincristine: Synthesis of a Key Series of Modified Vinca Alkaloids. ACS Medicinal Chemistry Letters, 2011, 2, 948-952.	2.8	54
27	Organocatalytic, Enantioselective Intramolecular [6 + 2] Cycloaddition Reaction for the Formation of Tricyclopentanoids and Insight on Its Mechanism from a Computational Study. Journal of the American Chemical Society, 2011, 133, 20175-20185.	13.7	66
28	One-pot synthesis of chiral bicyclo[3.3.0]octatrienes using diphenylprolinol silyl ether-mediated ene-type reaction. Tetrahedron, 2010, 66, 4894-4899.	1.9	23
29	Catharanthine C16 substituent effects on the biomimetic coupling with vindoline: Preparation and evaluation of a key series of vinblastine analogues. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6408-6410.	2.2	45
30	Diphenylprolinol Silyl Ether Catalysis in an Asymmetric Formal Carbo [3 + 3] Cycloaddition Reaction via a Domino Michael/Knoevenagel Condensation. Organic Letters, 2009, 11, 45-48.	4.6	115
31	Diphenylprolinol Silyl Ether as a Catalyst in an Asymmetric, Catalytic, and Direct Michael Reaction of Nitroethanol with α,β-Unsaturated Aldehydes. Organic Letters, 2009, 11, 4056-4059.	4.6	54
32	Diphenylprolinol silyl ether as a catalyst in an asymmetric, catalytic and direct α-benzoyloxylation of aldehydes. Chemical Communications, 2009, , 3083.	4.1	71
33	Diphenylprolinol Silyl Ether as a Catalyst in an Enantioselective, Catalytic, Formal Aza [3+3] Cycloaddition Reaction for the Formation of Enantioenriched Piperidines. Angewandte Chemie - International Edition, 2008, 47, 4012-4015.	13.8	118
34	Asymmetric Diels–Alder Reactions of α,βâ€Unsaturated Aldehydes Catalyzed by a Diarylprolinol Silyl Ether Salt in the Presence of Water. Angewandte Chemie - International Edition, 2008, 47, 6634-6637.	13.8	159
35	Organocatalyst-Mediated Enantioselective Intramolecular Aldol Reaction Featuring the Rare Combination of Aldehyde as Nucleophile and Ketone as Electrophile. Journal of Organic Chemistry, 2007, 72, 6493-6499.	3.2	51
36	Diarylprolinol Silyl Ether as Catalyst of anexo-Selective, Enantioselective Dielsâ^'Alder Reaction. Organic Letters, 2007, 9, 2859-2862.	4.6	134

Hiroaki Gotoh

#	Article	IF	CITATIONS
37	Diphenylprolinol Silyl Ether as Catalyst of an Asymmetric, Catalytic, and Direct Michael Reaction of Nitroalkanes with α,β-Unsaturated Aldehydes. Organic Letters, 2007, 9, 5307-5309.	4.6	238
38	Highly Diastereo- and Enantioselective Direct Aldol Reactions in Water. Angewandte Chemie - International Edition, 2006, 45, 958-961.	13.8	455
39	Enantioselective Ene Reaction of Cyclopentadiene and α,β-Enals Catalyzed by a Diphenylprolinol Silyl Ether. Angewandte Chemie - International Edition, 2006, 45, 6853-6856.	13.8	117
40	Diphenylprolinol Silyl Ethers as Efficient Organocatalysts for the Asymmetric Michael Reaction of Aldehydes and Nitroalkenes. Angewandte Chemie - International Edition, 2005, 44, 4212-4215.	13.8	1,177
41	Diphenylprolinol Silyl Ethers as Efficient Organocatalysts for the Asymmetric Michael Reaction of Aldehydes and Nitroalkenes ChemInform, 2005, 36, no.	0.0	0
42	Cysteine-Derived Organocatalyst in a Highly Enantioselective Intramolecular Michael Reaction. Journal of the American Chemical Society, 2005, 127, 16028-16029.	13.7	218
43	First Asymmetric Total Synthesis of Synerazol, an Antifungal Antibiotic, and Determination of Its Absolute Stereochemistry. Journal of Organic Chemistry, 2005, 70, 5643-5654.	3.2	35