Seung Soon Jang

List of Publications by Citations

Source: https://exaly.com/author-pdf/3315174/seung-soon-jang-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

153 papers

4,976 citations

38 h-index 65 g-index

172 ext. papers

5,769 ext. citations

6.9 avg, IF

5.77 L-index

#	Paper	IF	Citations
153	Nanophase-Segregation and Transport in Nafion 117 from Molecular Dynamics Simulations: Effect of Monomeric Sequence. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 3149-3157	3.4	375
152	Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells. <i>Nano Energy</i> , 2016 , 26, 208-215	17.1	331
151	Molecular Dynamics Study of a Surfactant-Mediated Decane Water Interface: Effect of Molecular Architecture of Alkyl Benzene Sulfonate. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 12130-12140	3.4	187
150	Structures and properties of self-assembled monolayers of bistable [2]rotaxanes on Au (111) surfaces from molecular dynamics simulations validated with experiment. <i>Journal of the American Chemical Society</i> , 2005 , 127, 1563-75	16.4	185
149	Self-polymerized dopamine as an organic cathode for Li- and Na-ion batteries. <i>Energy and Environmental Science</i> , 2017 , 10, 205-215	35.4	181
148	Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. <i>Nature Materials</i> , 2017 , 16, 370-378	27	148
147	First-Principles Density Functional Theory Modeling of Li Binding: Thermodynamics and Redox Properties of Quinone Derivatives for Lithium-Ion Batteries. <i>Journal of the American Chemical Society</i> , 2016 , 138, 2374-82	16.4	142
146	All Solid-State Lithium Batteries Assembled with Hybrid Solid Electrolytes. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A704-A710	3.9	124
145	Mechanical and transport properties of the poly(ethylene oxide)-poly(acrylic acid) double network hydrogel from molecular dynamic simulations. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 1729-37	3.4	121
144	Multi-paradigm multi-scale simulations for fuel cell catalysts and membranes. <i>Molecular Simulation</i> , 2006 , 32, 251-268	2	105
143	The Source of Helicity in Perfluorinated N-Alkanes. <i>Macromolecules</i> , 2003 , 36, 5331-5341	5.5	97
142	Structures and properties of Newton black films characterized using molecular dynamics simulations. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 7992-8001	3.4	91
141	Molecular dynamics simulation of amphiphilic bistable [2]rotaxane langmuir monolayers at the air/water interface. <i>Journal of the American Chemical Society</i> , 2005 , 127, 14804-16	16.4	90
140	Aromatic Ionomers with Highly Acidic Sulfonate Groups: Acidity, Hydration, and Proton Conductivity. <i>Macromolecules</i> , 2011 , 44, 8458-8469	5.5	83
139	ReaxFF reactive force field for solid oxide fuel cell systems with application to oxygen ion transport in yttria-stabilized zirconia. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 3133-40	2.8	77
138	First-principles study of the switching mechanism of [2]catenane molecular electronic devices. <i>Physical Review Letters</i> , 2005 , 94, 156801	7.4	67
137	Density functional theory studies of the [2]rotaxane component of the Stoddart-heath molecular switch. <i>Journal of the American Chemical Society</i> , 2004 , 126, 12636-45	16.4	66

(2005-2015)

136	High-Density Lithium-Ion Energy Storage Utilizing the Surface Redox Reactions in Folded Graphene Films. <i>Chemistry of Materials</i> , 2015 , 27, 3291-3298	9.6	64
135	Molecular dynamics simulation study of P (VP-co-HEMA) hydrogels: effect of water content on equilibrium structures and mechanical properties. <i>Biomaterials</i> , 2009 , 30, 6130-41	15.6	61
134	Magnetism in dopant-free ZnO nanoplates. <i>Nano Letters</i> , 2012 , 12, 576-81	11.5	59
133	Molecular Dynamics Simulation Study of a Polysulfone-Based Anion Exchange Membrane in Comparison with the Proton Exchange Membrane. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 12577-125	5 8 7	58
132	Adsorption of Ed-glucose and cellobiose on kaolinite surfaces: Density functional theory (DFT) approach. <i>Applied Clay Science</i> , 2013 , 71, 73-81	5.2	58
131	Polymer electrolyte membranes based on poly(arylene ether sulfone) with pendant perfluorosulfonic acid. <i>Polymer Chemistry</i> , 2013 , 4, 272-281	4.9	56
130	Nanophase segregation and water dynamics in the dendrion diblock copolymer formed from the FrEhet polyaryl ethereal dendrimer and linear PTFE. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 10154-67	3 ·4	55
129	"Organic aqua regia"powerful liquids for dissolving noble metals. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 7929-32	16.4	53
128	Application of DFT-based machine learning for developing molecular electrode materials in Li-ion batteries <i>RSC Advances</i> , 2018 , 8, 39414-39420	3.7	49
127	Water distribution in dentin matrices: bound vs. unbound water. <i>Dental Materials</i> , 2015 , 31, 205-16	5.7	48
126	Structures and Transport Properties of Hydrated Water-Soluble Dendrimer-Grafted Polymer Membranes for Application to Polymer Electrolyte Membrane Fuel Cells: Classical Molecular Dynamics Approach. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 2759-2769	3.8	47
125	Effect of Superacidic Side Chain Structures on High Conductivity Aromatic Polymer Fuel Cell Membranes. <i>Macromolecules</i> , 2015 , 48, 7117-7126	5.5	45
124	The importance of size-exclusion characteristics of type I collagen in bonding to dentin matrices. <i>Acta Biomaterialia</i> , 2013 , 9, 9522-8	10.8	45
123	First-principles study of Li adsorption in a carbon nanotube-fullerene hybrid system. <i>Carbon</i> , 2011 , 49, 286-293	10.4	45
122	A molecular dynamics simulation study of hydrated sulfonated poly(ether ether ketone) for application to polymer electrolyte membrane fuel cells: Effect of water content. <i>Journal of Renewable and Sustainable Energy</i> , 2009 , 1, 033101	2.5	45
121	Interfacial reactions of ozone with surfactant protein B in a model lung surfactant system. <i>Journal of the American Chemical Society</i> , 2010 , 132, 2254-63	16.4	44
120	Monte Carlo simulation of the orderdisorder transition of a symmetric cyclic diblock copolymer system. <i>Journal of Chemical Physics</i> , 1999 , 111, 1712-1720	3.9	44
119	Molecular dynamics simulation study on a monolayer of half [2]rotaxane self-assembled on Au(111). <i>Journal of the American Chemical Society</i> , 2005 , 127, 4959-64	16.4	43

118	Cytoprotective Self-assembled RGD Peptide Nanofilms for Surface Modification of Viable Mesenchymal Stem Cells. <i>Chemistry of Materials</i> , 2017 , 29, 2055-2065	9.6	41
117	Conformations and charge transport characteristics of biphenyldithiol self-assembled-monolayer molecular electronic devices: a multiscale computational study. <i>Journal of Chemical Physics</i> , 2005 , 122, 244703	3.9	41
116	Effect of monomeric sequence on nanostructure and water dynamics in Nafion 117. <i>Solid State Ionics</i> , 2004 , 175, 805-808	3.3	40
115	Structure Solution from Powder Diffraction of Copper 1,4-Benzenedicarboxylate. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 2140-2145	2.3	38
114	Free energy barrier for molecular motions in bistable [2]rotaxane molecular electronic devices. Journal of Physical Chemistry A, 2009 , 113, 2136-43	2.8	38
113	Effect of cyclic chain architecture on properties of dilute solutions of polyethylene from molecular dynamics simulations. <i>Journal of Chemical Physics</i> , 2003 , 119, 1843-1854	3.9	38
112	Molecular Dynamics Simulations of Aldol Condensation Catalyzed by Alkylamine-Functionalized Crystalline Silica Surfaces. <i>Journal of the American Chemical Society</i> , 2016 , 138, 7664-72	16.4	34
111	Interaction of Cliwith water: first-principles modeling and environmental implications. <i>Environmental Science & Environmental Envir</i>	10.3	33
110	Systematic Molecular Design of Ketone Derivatives of Aromatic Molecules for Lithium-Ion Batteries: First-Principles DFT Modeling. <i>ChemSusChem</i> , 2017 , 10, 1584-1591	8.3	32
109	Effect of ZnO nanoparticles morphology on UV blocking of poly(vinyl alcohol)/ZnO composite nanofibers. <i>Materials Letters</i> , 2015 , 147, 20-24	3.3	31
108	Preparation of poly(ethylene terephthalate-co-isophthalate) by ester interchange reaction in the PET/PEI blend system. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 1997 , 35, 309-315	2.6	31
107	Thermodynamic and redox properties of graphene oxides for lithium-ion battery applications: a first principles density functional theory modeling approach. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 20600-6	3.6	30
106	Analysis of the mechanical behavior of poly(trimethylene terephthalate) in an amorphous state under uniaxial extension condition through atomistic modeling. <i>Journal of Chemical Physics</i> , 1999 , 110, 7524-7532	3.9	29
105	Role of anions on electrochemical exfoliation of graphite into graphene in aqueous acids. <i>Carbon</i> , 2020 , 167, 816-825	10.4	27
104	Deswelling Mechanisms of Surface-Grafted Poly(NIPAAm) Brush: Molecular Dynamics Simulation Approach. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 15974-15985	3.8	27
103	Stability of water-stable C60 clusters to OH radical oxidation and hydrated electron reduction. <i>Environmental Science & Environmental Science & Envir</i>	10.3	27
102	Effect of monomeric sequence on mechanical properties of P(VP-co-HEMA) hydrogels at low hydration. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 6604-12	3.4	27
101	Mechanical and Transport Properties of the Poly(ethylene oxide)Poly(acrylic acid) Double Network Hydrogel from Molecular Dynamic Simulations. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 14	440 ⁴ 14	14 0

Electrochemical and electronic properties of nitrogen doped fullerene and its derivatives for lithium-ion battery applications. <i>Journal of Energy Chemistry</i> , 2018 , 27, 528-534	12	27	
Importance of Exsolution in Transition-Metal (Co, Rh, and Ir)-Doped LaCrO3 Perovskite Catalysts for Boosting Dry Reforming of CH4 Using CO2 for Hydrogen Production. <i>Industrial &</i> Engineering Chemistry Research, 2019 , 58, 6385-6393	3.9	26	
Cycling performance of lithium-ion polymer cells assembled with a cross-linked composite polymer electrolyte using a fibrous polyacrylonitrile membrane and vinyl-functionalized SiO2 nanoparticles. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 12163-12170	13	26	
Adsorption of carboxylate on calcium carbonate (10 1 1 4) surface: Molecular simulation approach. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2015 , 474, 9-17	5.1	26	
Molecular dynamics simulation study of sodium dodecyl sulfate micelle: Water penetration and sodium dodecyl sulfate dissociation. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2015 , 474, 36-43	5.1	26	
A first-principles study of lithium adsorption on a graphene-fullerene nanohybrid system. <i>ChemPhysChem</i> , 2015 , 16, 789-95	3.2	26	
Mechanism of Li adsorption on carbon nanotube-fullerene hybrid system: a first-principles study. <i>ACS Applied Materials & Discrete Mate</i>	9.5	26	
Innovative cathode flow-field design for passive air-cooled polymer electrolyte membrane (PEM) fuel cell stacks. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 11704-11713	6.7	26	
A density functional theory (DFT) study of CO2 adsorption on Mg-rich minerals by enhanced charge distribution. <i>Computational Materials Science</i> , 2014 , 95, 181-186	3.2	25	
Interactions of Pt nanoparticles with molecular components in polymer electrolyte membrane fuel cells: multi-scale modeling approach. <i>RSC Advances</i> , 2016 , 6, 69670-69676	3.7	24	
Electrochemical Properties of Boron-Doped Fullerene Derivatives for Lithium-Ion Battery Applications. <i>ChemPhysChem</i> , 2018 , 19, 753-758	3.2	24	
Effect of temperature on structure and water transport of hydrated sulfonated poly(ether ether ketone): A molecular dynamics simulation approach. <i>Journal of Renewable and Sustainable Energy</i> , 2011 , 3, 043111	2.5	23	
Li adsorption on a graphenefullerene nanobud system: density functional theory approach. <i>RSC Advances</i> , 2015 , 5, 32819-32825	3.7	22	
Negative Differential Resistance of Oligo(Phenylene Ethynylene) Self-Assembled Monolayer Systems: The Electric-Field-Induced Conformational Change Mechanism. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 3722-3730	3.8	21	
Distribution and Diffusion of Water in Model Epoxy Molding Compound: Molecular Dynamics Simulation Approach. <i>IEEE Transactions on Advanced Packaging</i> , 2010 , 33, 333-339		20	
Investigation of ethanol infiltration into demineralized dentin collagen fibrils using molecular dynamics simulations. <i>Acta Biomaterialia</i> , 2016 , 36, 175-85	10.8	17	
Controlling the physicochemical state of carbon on graphene using focused electron-beam-induced deposition. <i>ACS Nano</i> , 2014 , 8, 6805-13	16.7	17	
Unveiled correlations between electron affinity and solvation in redox potential of quinone-based sodium-ion batteries. <i>Energy Storage Materials</i> , 2019 , 19, 242-250	19.4	17	
	Importance of Exsolution in Transition-Metal (Co, Rh, and In)-Doped LaCrO3 Perovskite Catalysts for Boosting Dry Reforming of CH4 Using CO2 for Hydrogen Production. Industrial & Engineering Chemistry Research, 2019, 58, 6385-6393 Cycling performance of lithium-ion polymer cells assembled with a cross-linked composite polymer electrolyte using a fibrous polyacrylonitrile membrane and vinyl-functionalized SiO2 nanoparticles. Journal of Materials Chemistry A, 2015, 3, 12163-12170 Adsorption of carboxylate on calcium carbonate (10 114) surface: Molecular simulation approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 474, 9-17 Molecular dynamics simulation study of Sodium dodecyl sulfate micelle: Water penetration and sodium dodecyl sulfate dissociation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 474, 36-43 A first-principles study of lithium adsorption on a graphene-fullerene nanohybrid system. ChemPhysChem, 2015, 16, 789-95 Mechanism of Li adsorption on carbon nanotube-fullerene hybrid system: a first-principles study. ACS Applied Materials & Dampin Interfaces, 2011, 3, 1186-94 Innovative cathode flow-field design for passive air-cooled polymer electrolyte membrane (PEM) fuel cell stacks. International Journal of Hydrogen Energy, 2020, 45, 11704-11713 A density functional theory (DFT) study of CO2 adsorption on Mg-rich minerals by enhanced charge distribution. Computational Materials Science, 2014, 95, 181-186 Interactions of Pt nanoparticles with molecular components in polymer electrolyte membrane fuel cells: multi-scale modeling approach. RSC Advances, 2016, 6, 69670-69676 Electrochemical Properties of Boron-Doped Fullerene Derivatives for Lithium-Ion Battery Applications. ChemPhysChem, 2018, 19, 753-758 Effect of temperature on structure and water transport of hydrated sulfonated poly(ether ether ketone): A molecular dynamics simulation approach. IEEE Transactions on Advanced Packaging, 2010, 33, 333-339 Distribution and Diffusion of Water in	Importance of Exsolution in Transition-Metal (Co., Rh., and Ir)-Doped LaCrO3 Perovskite Catalysts for Boosting Dry Reforming of CH4 Using CO2 for Hydrogen Production. Industrial & Bamp; Engineering Chemistry Research, 2019, 58, 6385-6393 Cycling performance of lithium-ion polymer cells assembled with a cross-linked composite polymer electrolyte using a fibrous polyacyrolonitril emembrane and vinyl-frunctionalized SiO2 nanoparticles. Journal of Materials Chemistry A, 2015, 3, 12163-12170 Adsorption of Cariboxylate on calcium carbonate (10 1114) surfaces: Molecular simulation approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 474, 9-17 Molecular dynamics simulation study of sodium dodecyl sulfate micelle: Water penetration and sodium dodecyl sulfate dissociation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 474, 36-43 A first-principles study of lithium adsorption on a graphene-fullerene nanohybrid system. ChemPhysChem, 2015, 16, 789-95 Mechanism of Li adsorption on carbon nanotube-fullerene hybrid system: a first-principles study. ACS Applied Materials & Damp; Interfaces, 2011, 3, 1186-94 Innovative cathode flow-field design for passive air-cooled polymer electrolyte membrane (PEM) fuel cell stacks. International Journal of Hydrogen Energy, 2020, 45, 11704-11713 A density functional theory (DFT) study of CO2 adsorption on Mayrich minerals by enhanced charge distribution. Computational Materials Science, 2014, 95, 181-186 Interactions of Pt nanoparticles with molecular components in polymer electrolyte membrane fuel electrochemical Properties of Boron-Doped Fullerene Derivatives for Lithium-lon Battery Applications. ChemPhysChem, 2018, 19, 753-758 Effect of temperature on structure and water transport of hydrated sulfonated poly(elther ether ketone): A molecular dynamics simulation approach. Invance, 2015, 5, 32819-32825 Negative Differential Resistance of Oligo(Phenylene Ethynylene) Self-Assembled Monolayer Systems: The Electric-Field-Induced Co	Importance of Exsolution in Transition-Metal (Co, Rh, and Ir)-Doped LaCrO3 Perovskite Catalysts for Boosting Dry Reforming of CH4 Using CO2 for Hydrogen Production. Industrial Ramp; 266 PGB OST 19 Profesoring of CH4 Using CO2 for Hydrogen Production. Industrial Ramp; 276 Programment of Illution-Industrial Ramp; 276 Programment of Illution-Industrial Ramp; 277 Programment of Illution-Industrial Ramp; 277 Programment of Illution-Industrial Ramp; 278 Programment of Industrial Ramp; 278 Programment of Programment of Industrial Ramp; 278 Programment of Programment of Materials Chemistry A, 2015, 3, 12163-12170 Adsorption of carboxylate on calcium carbonate (10 104) surface: Molecular simulation approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 474, 9-17 Molecular dynamics simulation study of sodium dodecyl sulfate micelle: Water penetration and sodium dodecyl sulfate dissociation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 474, 36-43 A first-principles study of lithium adsorption on a graphene-fullerene nanohybrid system. Chemichys Chem, 2015, 15, 789-95 Mechanism of Li adsorption on carbon nanotube-fullerene hybrid system: a first-principles study. ACS Applied Materials Ramp; Interfaces, 2011, 3, 1186-94 Innovative cathode flow-field design for passive air-cooled polymer electrolyte membrane (PEM) Field cell stacks. International Journal of Phydrogen Energy, 2020, 45, 1170-4-11713 A density functional theory (DFT) study of CO2 adsorption on Mg-rich minerals by enhanced charge distribution. Computational Materials Science, 2014, 95, 181-186 Interactions of Pt nanoparticles with molecular components in polymer electrolyte membrane fuel cells: multi-scale modeling approach. ISC Advances, 2016, 6, 69670-69676 Electrochemical Properties of Boron-Doped Fullerene Derivatives for Lithium-Ion Battery Applications. ChemPhysChem, 2018, 19, 753-758 Effect of temperature on structure and water transport of hydrated sulfanated poly(ether ether lethone): A mole

82	Li adsorption on a FullereneBingle wall carbon nanotube hybrid system: Density functional theory approach. <i>Current Applied Physics</i> , 2014 , 14, 1748-1754	2.6	16
81	A hydrogen storage nanotank: lithium-organic pillared graphite. <i>Chemical Communications</i> , 2009 , 5427-	9 5.8	16
80	Effects of Ester Interchange Reactions on the Phase Behavior of an Immiscible Polyester Blend: Monte Carlo Simulation. <i>Macromolecules</i> , 1999 , 32, 1679-1685	5.5	16
79	Lead-free halide double perovskites: Toward stable and sustainable optoelectronic devices. Materials Today, 2021,	21.8	16
78	Origin and Control of Polyacrylonitrile Alignments on Carbon Nanotubes and Graphene Nanoribbons. <i>Advanced Functional Materials</i> , 2018 , 28, 1706970	15.6	15
77	Density Functional Theory - Machine Learning Approach to Analyze the Bandgap of Elemental Halide Perovskites and Ruddlesden-Popper Phases. <i>ChemPhysChem</i> , 2018 , 19, 2559-2565	3.2	15
76	Boron-doped coronenes with high redox potential for organic positive electrodes in lithium-ion batteries: a first-principles density functional theory modeling study. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 10111-10120	13	14
75	Porous Strained Pt Nanostructured Thin-Film Electrocatalysts via Dealloying for PEM Fuel Cells. <i>Advanced Materials Interfaces</i> , 2020 , 7, 1901326	4.6	14
74	Density Functional Theory Modeling-Assisted Investigation of Thermodynamics and Redox Properties of Boron-Doped Corannulenes for Cathodes in Lithium-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 10675-10681	3.8	13
73	Contiguous and Atomically Thin Pt Film with Supra-Bulk Behavior Through Graphene-Imposed Epitaxy. <i>Advanced Functional Materials</i> , 2019 , 29, 1902274	15.6	13
72	Monte carlo simulation of copolymerization by ester interchange reaction in miscible polyester blends. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1998 , 36, 1637-1645	2.6	13
71	Enhanced Lithium Storage of an Organic Cathode via the Bipolar Mechanism. <i>ACS Applied Energy Materials</i> , 2020 , 3, 3728-3735	6.1	12
7º	Detecting the functional complexities between high-density lipoprotein mimetics. <i>Biomaterials</i> , 2018 , 170, 58-69	15.6	12
69	Investigation of the effect of erythrosine B on amyloid beta peptide using molecular modeling. Journal of Molecular Modeling, 2016 , 22, 92	2	12
68	Functionalized fullerenes in water: a closer look. Environmental Science & Env	4765.5	12
67	Influence of SWNTs on the Preferential Alignment of Molecular Moieties in PVA Fibers. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 617-626	2.6	12
66	Analysis of the mechanical behavior of amorphous atactic poly(oxypropylene) by atomistic modeling. <i>Macromolecular Theory and Simulations</i> , 1999 , 8, 1-9	1.5	12
65	Parametric study of passive air-cooled polymer electrolyte membrane fuel cell stacks. <i>International Journal of Heat and Mass Transfer</i> , 2020 , 156, 119886	4.9	11

64	Activating "Invisible" Glue: Using Electron Beam for Enhancement of Interfacial Properties of Graphene-Metal Contact. <i>ACS Nano</i> , 2016 , 10, 1042-9	16.7	11
63	Effect of solvent on electrical conductivity and gas sensitivity of PEDOT: PSS polymer composite films. <i>Journal of Applied Polymer Science</i> , 2015 , 132, n/a-n/a	2.9	11
62	Thermodynamic Stability of Zimmerman Self-Assembled Dendritic Supramolecules from Atomistic Molecular Dynamics Simulations. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 10041-10052	3.4	11
61	Nanostructures of Nafion Film at Platinum/Carbon Surface in Catalyst Layer of PEMFC: Molecular Dynamics Simulation Approach. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 21386-21395	3.8	11
60	Investigations of the band structures of edge-defect zigzag graphene nanoribbons using density functional theory. <i>RSC Advances</i> , 2016 , 6, 39587-39594	3.7	11
59	Dynamic modulation of electronic properties of graphene by localized carbon doping using focused electron beam induced deposition. <i>Nanoscale</i> , 2015 , 7, 14946-52	7.7	10
58	The effects of ethanol on the size-exclusion characteristics of type I dentin collagen to adhesive resin monomers. <i>Acta Biomaterialia</i> , 2016 , 33, 235-41	10.8	10
57	Localized conductive patterning via focused electron beam reduction of graphene oxide. <i>Applied Physics Letters</i> , 2015 , 106, 133109	3.4	10
56	Effect of monomeric sequence on transport properties of d-glucose and ascorbic acid in poly(VP-co-HEMA) hydrogels with various water contents: molecular dynamics simulation approach. <i>Theoretical Chemistry Accounts</i> , 2012 , 131, 1	1.9	10
55	Charge transport through polyene self-assembled monolayers from multiscale computer simulations. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 14888-97	3.4	10
54	Off-lattice Monte Carlo simulation of hyperbranched polymers, 1 Polycondensation of AB2 type monomers. <i>Macromolecular Theory and Simulations</i> , 2000 , 9, 188-195	1.5	10
53	Phase transformation of poly(trimethylene terephthalate) in crystalline state: An atomistic modeling approach. <i>Fibers and Polymers</i> , 2000 , 1, 18-24	2	10
52	Effect of the Side-Chain Length in Perfluorinated Sulfonic and Phosphoric Acid-Based Membranes on Nanophase Segregation and Transport: A Molecular Dynamics Simulation Approach. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 1571-1580	3.4	9
51	Molecular Modeling Approach to Determine the Flory-Huggins Interaction Parameter for Polymer Miscibility Analysis. <i>ChemPhysChem</i> , 2018 , 19, 1655-1664	3.2	9
50	Enhanced Selectivity for CO Adsorption on Mesoporous Silica with Alkali Metal Halide Due to Electrostatic Field: A Molecular Simulation Approach. <i>ACS Applied Materials & Discourted M</i>	9.5	9
49	Analyzing oxygen transport resistance and Pt particle growth effect in the cathode catalyst layer of polymer electrolyte fuel cells. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 13414-13427	6.7	9
48	Characterization of molecular association of poly(2-oxazoline)s-based micelles with various epoxides and diols via the Flory-Huggins theory: a molecular dynamics simulation approach. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 29161-70	3.6	8
47	Bandgap bowing in Ta-W-O system for efficient solar energy conversion: Insights from density functional theory and X-ray diffraction. <i>Applied Physics Letters</i> , 2013 , 103, 133905	3.4	8

46	Possible performance improvement in [2]catenane molecular electronic switches. <i>Applied Physics Letters</i> , 2006 , 88, 163112	3.4	8
45	Spectral Instability of Layered Mixed Halide Perovskites Results from Anion Phase Redistribution and Selective Hole Injection. <i>ACS Nano</i> , 2021 , 15, 1486-1496	16.7	8
44	Toward enhanced CO2 adsorption on bimodal calcium-based materials with porous truncated architectures. <i>Applied Surface Science</i> , 2020 , 505, 144512	6.7	8
43	Molecular structureEedox potential relationship for organic electrode materials: density functional theoryMachine learning approach. <i>Materials Today Energy</i> , 2020 , 17, 100482	7	8
42	Metal-foam-based cathode flow-field design to improve H2O retention capability of passive air cooled polymer electrolyte fuel cells. <i>International Journal of Thermal Sciences</i> , 2021 , 161, 106702	4.1	8
41	Dissipative particle dynamics simulation study of poly(2-oxazoline)-based multicompartment micelle nanoreactor. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 6284-90	3.6	7
40	Effect of Temperature on Water Molecules in a Model Epoxy Molding Compound: Molecular Dynamics Simulation Approach. <i>IEEE Transactions on Components, Packaging and Manufacturing Technology</i> , 2011 , 1, 1533-1542	1.7	7
39	Sodium Diffusion through Aluminum-Doped Zeolite BEA System: Effect of Water Solvation. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 819-826	3.8	7
38	Effect of Uniaxial Deformation on Structure and Transport in Hydrated Nafion 117: Molecular Dynamics Simulation Study. <i>Materials Performance and Characterization</i> , 2015 , 4, 20150018	0.5	7
37	Sponge Behaviors of Functionalized Few-Walled Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 14868-14875	3.8	6
36	CeO2(111) Surface with Oxygen Vacancy for Radical Scavenging: A Density Functional Theory Approach. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 20950-20959	3.8	6
35	Molecular Simulation Study on Factors Affecting Carbon Dioxide Adsorption on Amorphous Silica Surfaces. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 12580-12588	3.8	5
34	A mechanistic study of the interaction of water-soluble borate glass with apatite-bound heterocyclic nitrogen-containing bisphosphonates. <i>Acta Biomaterialia</i> , 2016 , 31, 339-347	10.8	5
33	Yielding and plastic behaviour of amorphous atactic poly(oxypropylene) under uniaxial compression: an atomistic modeling approach. <i>Polymer</i> , 1999 , 40, 919-925	3.9	5
32	Homogenization process caused by competition between phase separation and ester-interchange reactions in immiscible polyester blends: A Monte Carlo simulation. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2000 , 38, 590-598	2.6	4
31	Structural Tunability of Multicompartment Micelles as a Function of Lipophilic-Fluorophilic Block Length Ratio. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 12164-12172	3.4	4
30	Effect of Block Length and Side Chain Length Ratios on Determining a Multicompartment Micelle Structure. <i>Journal of Physical Chemistry B</i> , 2019 , 123, 4784-4791	3.4	3
29	Electron-Transport Characteristics through Aluminum Oxide (100) and (012) in a Metal-Insulator-Metal Junction System: Density Functional Theory-Nonequilibrium Green Function Approach. ACS Omega, 2020, 5, 1717-1724	3.9	3

28	Synthesis of temporarily solubilised azo disperse dyes containing a Bulphatoethylsulphonyl group and dispersant-free dyeing of polyethylene terephthalate fabric. <i>Coloration Technology</i> , 2016 , 132, 368-	- 3 75	3
27	Structural and Electronic Properties of Sulfuric Acid-Doped Single-Walled Carbon Nanotube. <i>Journal of Computational and Theoretical Nanoscience</i> , 2010 , 7, 232-236	0.3	3
26	Distribution characteristics of phosphoric acid and PTFE binder on Pt/C surfaces in high-temperature polymer electrolyte membrane fuel cells: Molecular dynamics simulation approach. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 17295-17305	6.7	3
25	Creation of discrete active site domains via mesoporous silica poly(styrene) composite materials for incompatible acidBase cascade reactions. <i>Catalysis Science and Technology</i> , 2021 , 11, 1311-1322	5.5	3
24	Group Vibrational Mode Assignments as a Broadly Applicable Tool for Characterizing Ionomer Membrane Structure as a Function of Degree of Hydration. <i>Chemistry of Materials</i> , 2020 , 32, 1828-1843	9.6	2
23	Molecular dynamics simulation study on the structural properties of poly (ethylene terephthalate) under uniaxial extension and thermal shrinkage processes. <i>Current Applied Physics</i> , 2018 , 18, 19-26	2.6	2
22	Blends of poly(3-alkylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester for organic photovoltaic cell applications: Multi-scale modeling approach. <i>Computational Materials Science</i> , 2017 , 126, 299-307	3.2	2
21	Covalent organic frameworks: Design and applications in electrochemical energy storage devices. <i>Informa</i> Materily,	23.1	2
20	Activity-stability benefits of Pt/C fuel cell electrocatalysts prepared via remote CeO2 interfacial doping. <i>Journal of Power Sources</i> , 2021 , 496, 229798	8.9	2
19	Distribution and Transport of CO in Hydrated Hyperbranched Poly(ethylenimine) Membranes: A Molecular Dynamics Simulation Approach. <i>ACS Omega</i> , 2021 , 6, 3390-3398	3.9	2
18	Dissipative particle dynamics simulation of multicompartment micelle nanoreactor with channel for reactants <i>RSC Advances</i> , 2018 , 8, 37866-37871	3.7	2
17	Single-Step Fabrication of Polymeric Composite Membrane via Centrifugal Colloidal Casting for Fuel Cell Applications <i>Small Methods</i> , 2021 , 5, e2100285	12.8	2
16	Improving Water Management and Performance of an Air-Cooled Fuel Cell System Using Pressurized Air for Aviation Applications. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 084503	3.9	2
15	Density Functional Theory Study of Oxygen Reduction on Graphene and Platinum Surfaces of Pttraphene Hybrids. <i>ACS Applied Nano Materials</i> , 2021 , 4, 1067-1075	5.6	2
14	Structure and hydrophilicity of azo-dye-derived rotaxane: density functional theory approach. <i>Coloration Technology</i> , 2017 , 133, 382-390	2	1
13	Effects of thermal shrinkage temperatures and comonomers on thermal shrinkage of uniaxially-stretched PET copolymer films: a molecular dynamics simulation approach. <i>New Journal of Chemistry</i> , 2018 , 42, 4991-4997	3.6	1
12	Carbon Fibers: Origin and Control of Polyacrylonitrile Alignments on Carbon Nanotubes and Graphene Nanoribbons (Adv. Funct. Mater. 15/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870099	15.6	1
11	Dispersant-free dyeing of poly(lactic acid) fabric with temporarily solubilised disperse dyes from azopyridone derivatives. <i>Coloration Technology</i> , 2016 , 132, 361-367	2	1

10	Multi-Scale First-Principles Modeling of Three-Phase System of Polymer Electrolyte Membrane Fuel Cell. <i>ECS Transactions</i> , 2013 , 50, 155-160	1	1
9	Unveiled Correlations between Electron Affinity and Solvation in Redox Potential of Quinone-Based Sodium-Ion Batteries. SSRN Electronic Journal,	1	1
8	Tailored Design of Electrochemically Degradable Anthraquinone Functionality toward Organic Cathodes. <i>ACS Applied Materials & Acs Applied & Acs </i>	9.5	1
7	DFT-Machine Learning Approach for Accurate Prediction of p. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 8712-8722	2.8	1
6	One-pot synthesis of linear triblock terpolymers and their aqueous self-assembly. <i>Polymer Chemistry</i> , 2021 , 12, 1967-1974	4.9	1
5	Porous carbon fibers from gel-spun polyacrylonitrile and poly(methyl methacrylate)-block-poly(acrylonitrile). <i>Carbon</i> , 2022 , 192, 332-346	10.4	1
5		3.9	0
	methacrylate)-block-poly(acrylonitrile). <i>Carbon</i> , 2022 , 192, 332-346 Multi-Variate Optimization of Polymer Electrolyte Membrane Fuel Cells in Consideration of Effects		
4	methacrylate)-block-poly(acrylonitrile). <i>Carbon</i> , 2022 , 192, 332-346 Multi-Variate Optimization of Polymer Electrolyte Membrane Fuel Cells in Consideration of Effects of GDL Compression and Intrusion. <i>Journal of the Electrochemical Society</i> , 2022 , 169, 014511 Ce(III)-Based Coordination-Complex-Based Efficient Radical Scavenger for Exceptional Durability Enhancement of Polymer Application in Proton-Exchange Membrane Fuel Cells and Organic	3.9	0