
William Rosenblum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3315139/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Endothelial dependent relaxation demonstrated in vivo in cerebral arterioles Stroke, 1986, 17, 494-497.	1.0	141
2	Laser-induced endothelial damage inhibits endothelium-dependent relaxation in the cerebral microcirculation of the mouse Circulation Research, 1987, 60, 169-176.	2.0	106
3	Hydroxyl radical mediates the endothelium-dependent relaxation produced by bradykinin in mouse cerebral arterioles Circulation Research, 1987, 61, 601-603.	2.0	105
4	Endothelium-dependent constriction demonstrated in vivo in mouse cerebral arterioles Circulation Research, 1988, 63, 837-843.	2.0	52
5	In vivo effect of methylene blue on endothelium-dependent and endothelium-independent dilations of brain microvessels in mice Circulation Research, 1988, 62, 86-90.	2.0	51
6	Endothelium-dependent L-Arg- and L-NMMA-sensitive mechanisms regulate tone of brain microvessels. American Journal of Physiology - Heart and Circulatory Physiology, 1990, 259, H1396-H1401.	1.5	45
7	Endothelium-dependent effects of substance P and calcitonin gene-related peptide on mouse pial arterioles Stroke, 1993, 24, 1043-1047.	1.0	37
8	Myoendothelial junctions in human brain arterioles Stroke, 1991, 22, 1592-1597.	1.0	36
9	Antisense Evidence for Two Functionally Active Forms of Nitric Oxide Synthase in Brain Microvascular Endothelium. Biochemical and Biophysical Research Communications, 1996, 224, 535-543.	1.0	33
10	Calcium ionophore and acetylcholine dilate arterioles on the mouse brain by different mechanisms Stroke, 1989, 20, 1391-1395.	1.0	31
11	Anti-CD31 delays platelet adhesion/aggregation at sites of endothelial injury in mouse cerebral arterioles. American Journal of Pathology, 1994, 145, 33-6.	1.9	29
12	The Endothelium-Dependent Effects of Thimerosal on Mouse Pial Arterioles in vivo: Evidence for Control of Microvascular Events by EDRF as Well as Prostaglandins. Journal of Cerebral Blood Flow and Metabolism, 1992, 12, 703-706.	2.4	27
13	Endotheliumâ€dependent responses in the microcirculation observed inÂvivo. Acta Physiologica, 2018, 224, e13111.	1.8	26
14	Endothelium dependence of dilation of pial arterioles in mouse brain by calcium ionophore Stroke, 1988, 19, 1379-1382.	1.0	25
15	The Presence, Origin, and Significance of AÎ ² Peptide in the Cell Bodies of Neurons. Journal of Neuropathology and Experimental Neurology, 1999, 58, 575-581.	0.9	25
16	Histamine elicits competing endothelium-dependent constriction and endothelium-independent dilation in vivo in mouse cerebral arterioles Stroke, 1990, 21, 305-309.	1.0	24
17	Ultrastructural studies of pial vascular endothelium following damage resulting in loss of endothelium-dependent relaxation Stroke, 1987, 18, 927-931.	1.0	23
18	The Importance of Fibrinoid Necrosis as the Cause of Cerebral Hemorrhage in Hypertension. Commentary. Journal of Neuropathology and Experimental Neurology, 1993, 52, 11-13.	0.9	21

WILLIAM ROSENBLUM

#	Article	IF	CITATIONS
19	Dimethylsulfoxide and ethanol, commonly used diluents, prevent dilation of pial arterioles by openers of KATP ion channels. European Journal of Pharmacology, 2001, 430, 101-106.	1.7	21
20	Selective Impairment of Response to Acetylcholine After Ischemia/Reperfusion in Mice. Stroke, 1997, 28, 448-452.	1.0	21
21	L-NMMA in brain microcirculation of mice is inhibited by blockade of cyclooxygenase and by superoxide dismutase. American Journal of Physiology - Heart and Circulatory Physiology, 1992, 262, H1343-H1349.	1.5	20
22	In vivo evidence that an adenylate cyclase-cAMP system dilates cerebral arterioles in mice Stroke, 1988, 19, 888-891.	1.0	16
23	Interaction of endothelium with dilation produced by inhibitors of cyclic nucleotide diesterases in mouse brain arterioles in vivo Stroke, 1993, 24, 266-270.	1.0	16
24	Tetrahydrobiopterin, a Cofactor for Nitric Oxide Synthase, Produces Endothelium-Dependent Dilation of Mouse Pial Arterioles. Stroke, 1997, 28, 186-189.	1.0	16
25	Loss of endothelium-dependent relaxation in mouse cerebral microvessels may be rapidly reversible. Microvascular Research, 1988, 35, 132-138.	1.1	14
26	Evidence for a KATP ion channel link in the inhibition of hypercapnic dilation of pial arterioles by 7-nitroindazole and tetrodotoxin. European Journal of Pharmacology, 2001, 417, 203-215.	1.7	14
27	Selective Depression of Endothelium-Dependent Dilations During Cerebral Ischemia. Stroke, 1995, 26, 1877-1882.	1.0	14
28	Leukotriene constriction of mouse pial arterioles in vivo is endothelium-dependent and receptor-mediated Stroke, 1990, 21, 1618-1620.	1.0	13
29	Tone regulates opposing endothelium-dependent and -independent forces: resistance brain vessels in vivo. American Journal of Physiology - Heart and Circulatory Physiology, 1990, 259, H243-H247.	1.5	12
30	Negative correlations between parenchymal amyloid and vascular amyloid in hippocampus. American Journal of Pathology, 1988, 130, 532-6.	1.9	10
31	L-arginine suffusion restores response to acetylcholine in brain arterioles with damaged endothelium. American Journal of Physiology - Heart and Circulatory Physiology, 1992, 262, H961-H964.	1.5	6
32	One day of estradiol treatment enhances platelet aggregation at the site of microvascular injury without altering aggregation ex vivo. Life Sciences, 1988, 42, 123-128.	2.0	5
33	Singlet oxygen scavengers affect laser-dye impairment of endothelium-dependent responses of brain arterioles. American Journal of Physiology - Heart and Circulatory Physiology, 1996, 270, H1258-H1263.	1.5	5
34	Conservation of Flow Demonstrated Using the Two-Slit Velocimeter and Cross Correlator in Epiilluminated Surface Microvessels of the Mouse Brain. Microcirculation, 1996, 3, 187-190.	1.0	5
35	Control of brain microcirculation by endothelium Keio Journal of Medicine, 1990, 39, 137-141.	0.5	4
36	Is the EDRF in the Cerebral Circulation NO? Its Release by Shear and the Dangers in Interpreting the Effects of NOS Inhibitors Keio Journal of Medicine, 1998, 47, 142-149.	0.5	4

#	Article	IF	CITATIONS
37	Protein synthesis and rapid recovery of endothelium-dependent dilation after endothelial injury of pial arterioles. American Journal of Physiology - Heart and Circulatory Physiology, 1995, 268, H512-H515.	1.5	2
38	Platelet aggregation in cerebral arterioles after percussive brain trauma. Texas Heart Institute Journal, 1982, 9, 345-8.	0.1	1
39	Do no harm versus the greatest good for the greatest number: health care and the clash of ethical imperatives. Clinical Laboratory Management Review, 1998, 12, 300, 295-9.	0.0	О