Fabienne C Fiesel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3314948/publications.pdf

Version: 2024-02-01

43 papers

9,938 citations

30 h-index 315739 38 g-index

43 all docs 43 docs citations

43 times ranked

20276 citing authors

#	Article	IF	Citations
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nature Cell Biology, 2010, 12, 119-131.	10.3	2,360
3	The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations. Autophagy, 2010, 6, 871-878.	9.1	267
4	Autophagy in Parkinson's Disease. Journal of Molecular Biology, 2020, 432, 2651-2672.	4.2	206
5	Knockdown of transactive response DNA-binding protein (TDP-43) downregulates histone deacetylase 6. EMBO Journal, 2010, 29, 209-221.	7.8	200
6	PINK1, Parkin, and Mitochondrial Quality Control: What can we Learn about Parkinson's Disease Pathobiology?. Journal of Parkinson's Disease, 2017, 7, 13-29.	2.8	175
7	TDP-43-Mediated Neuron Loss In Vivo Requires RNA-Binding Activity. PLoS ONE, 2010, 5, e12247.	2.5	166
8	(Pathoâ€)physiological relevance of <scp>PINK</scp> 1â€dependent ubiquitin phosphorylation. EMBO Reports, 2015, 16, 1114-1130.	4. 5	147
9	PINK1 Primes Parkin-Mediated Ubiquitination of PARIS in Dopaminergic Neuronal Survival. Cell Reports, 2017, 18, 918-932.	6.4	141
10	Heterozygous PINK1 p.G411S increases risk of Parkinson's disease via a dominant-negative mechanism. Brain, 2017, 140, 98-117.	7.6	116
11	Alpha-synuclein-induced mitochondrial dysfunction is mediated via a sirtuin 3-dependent pathway. Molecular Neurodegeneration, 2020, 15, 5.	10.8	112
12	miR-27a and miR-27b regulate autophagic clearance of damaged mitochondria by targeting PTEN-induced putative kinase 1 (PINK1). Molecular Neurodegeneration, $2016,11,55$.	10.8	106
13	The AMPK–Parkin axis negatively regulates necroptosis and tumorigenesis by inhibiting the necrosome. Nature Cell Biology, 2019, 21, 940-951.	10.3	102
14	Phosphorylation by PINK1 Releases the UBL Domain and Initializes the Conformational Opening of the E3 Ubiquitin Ligase Parkin. PLoS Computational Biology, 2014, 10, e1003935.	3.2	95
15	Age- and disease-dependent increase of the mitophagy marker phospho-ubiquitin in normal aging and Lewy body disease. Autophagy, 2018, 14, 1404-1418.	9.1	87
16	TDP-43 regulates global translational yield by splicing of exon junction complex component SKAR. Nucleic Acids Research, 2012, 40, 2668-2682.	14.5	83
17	Parkin protects against tyrosinaseâ€mediated dopamine neurotoxicity by suppressing stressâ€activated protein kinase pathways. Journal of Neurochemistry, 2008, 105, 1700-1715.	3.9	71
18	Structural and Functional Impact of Parkinson Disease-Associated Mutations in the E3 Ubiquitin Ligase Parkin. Human Mutation, 2015, 36, 774-786.	2.5	69

#	Article	IF	Citations
19	Select E2 enzymes differentially regulate parkin activation and mitophagy. Journal of Cell Science, 2014, 127, 3488-504.	2.0	65
20	UBE2E Ubiquitin-conjugating Enzymes and Ubiquitin Isopeptidase Y Regulate TDP-43 Protein Ubiquitination. Journal of Biological Chemistry, 2014, 289, 19164-19179.	3.4	62
21	The PINK1 p.1368N mutation affects protein stability and ubiquitin kinase activity. Molecular Neurodegeneration, 2017, 12, 32.	10.8	62
22	TDPâ€43 and FUS/TLS: cellular functions and implications for neurodegeneration. FEBS Journal, 2011, 278, 3550-3568.	4.7	58
23	Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1. Experimental Cell Research, 2010, 316, 1213-1224.	2.6	57
24	TDP-43 knockdown impairs neurite outgrowth dependent on its target histone deacetylase 6. Molecular Neurodegeneration, 2011, 6, 64.	10.8	55
25	Mitochondrial targeting sequence variants of the <i>CHCHD2</i> gene are a risk for Lewy body disorders. Neurology, 2015, 85, 2016-2025.	1.1	51
26	Activation of the E3 ubiquitin ligase Parkin. Biochemical Society Transactions, 2015, 43, 269-274.	3.4	45
27	Early-onset Parkinson's disease due to PINK1 p.Q456X mutation – Clinical and functional study. Parkinsonism and Related Disorders, 2014, 20, 1274-1278.	2.2	41
28	Mitochondrial targeted HSP90 inhibitor Gamitrinib-TPP (G-TPP) induces PINK1/Parkin-dependent mitophagy. Oncotarget, 2017, 8, 106233-106248.	1.8	41
29	Hexokinases link DJ-1 to the PINK1/parkin pathway. Molecular Neurodegeneration, 2017, 12, 70.	10.8	40
30	Mitophagy alterations in Alzheimer's disease are associated with granulovacuolar degeneration and early tau pathology. Alzheimer's and Dementia, 2021, 17, 417-430.	0.8	34
31	Parkinson's disease-associated DJ-1 modulates innate immunity signaling in Caenorhabditis elegans. Journal of Neural Transmission, 2010, 117, 599-604.	2.8	30
32	Sensitive ELISA-based detection method for the mitophagy marker p-S65-Ub in human cells, autopsy brain, and blood samples. Autophagy, 2021, 17, 2613-2628.	9.1	29
33	Three families with Perry syndrome from distinct parts of the world. Parkinsonism and Related Disorders, 2014, 20, 884-888.	2.2	24
34	Disease relevance of phosphorylated ubiquitin (p-S65-Ub). Autophagy, 2015, 11, 2125-2126.	9.1	23
35	Early-Onset Parkinson Disease Screening in Patients From Nigeria. Frontiers in Neurology, 2020, 11, 594927.	2.4	5
36	Non-radioactive in vitro PINK1 Kinase Assays Using Ubiquitin or Parkin as Substrate. Bio-protocol, 2016, 6, .	0.4	5

FABIENNE C FIESEL

#	Article	IF	CITATIONS
37	Cathepsin B p.Gly284Val Variant in Parkinson's Disease Pathogenesis. International Journal of Molecular Sciences, 2022, 23, 7086.	4.1	5
38	Reply: Heterozygous PINK1 p.G411S in rapid eye movement sleep behaviour disorder. Brain, 2017, 140, e33-e33.	7.6	2
39	The PINK1 p.1368N Mutation Affects Protein Stability and Kinase Activity with Its Structural Change. Juntendo Medical Journal, 2018, 64, 17-30.	0.1	0
40	Parkin., 2016,, 1-9.		0
41	Parkin. , 2017, , 1-9.		O
42	Parkin. , 2018, , 3786-3794.		0
43	Distinct Missense Mutations of the Parkinson's Diseaseâ€Related Ubiquitin Kinase PINK1 Alter Auto―or Substrateâ€Phosphorylation. FASEB Journal, 2019, 33, lb329.	0.5	0