Thierry Léveillard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/331468/publications.pdf

Version: 2024-02-01

101 papers 8,645 citations

38 h-index 48315 88 g-index

106 all docs

106 docs citations

106 times ranked 11365 citing authors

#	Article	IF	CITATIONS
1	<scp><i>WDR34</i></scp> , a candidate gene for nonâ€syndromic rodâ€cone dystrophy. Clinical Genetics, 2021, 99, 298-302.	2.0	7
2	Cone-Enriched Cultures from the Retina of Chicken Embryos to Study Rod to Cone Cellular Interactions. Journal of Visualized Experiments, 2021, , .	0.3	2
3	The role of RdCVFL in a mathematical model of photoreceptor interactions. Journal of Theoretical Biology, 2021, 520, 110642.	1.7	7
4	Mutated CCDC51 Coding for a Mitochondrial Protein, MITOK Is a Candidate Gene Defect for Autosomal Recessive Rod-Cone Dystrophy. International Journal of Molecular Sciences, 2021, 22, 7875.	4.1	3
5	Assessing Photoreceptor Status in Retinal Dystrophies: From High-Resolution Imaging to Functional Vision. American Journal of Ophthalmology, 2021, 230, 12-47.	3.3	19
6	A Splice Variant in SLC16A8 Gene Leads to Lactate Transport Deficit in Human iPS Cell-Derived Retinal Pigment Epithelial Cells. Cells, 2021, 10, 179.	4.1	12
7	Association of Smoking, Alcohol Consumption, Blood Pressure, Body Mass Index, and Glycemic Risk Factors With Age-Related Macular Degeneration. JAMA Ophthalmology, 2021, 139, 1299.	2.5	29
8	The metabolic signaling of the nucleoredoxin-like 2 gene supports brain function. Redox Biology, 2021, 48, 102198.	9.0	7
9	The 10q26 Risk Haplotype of Age-Related Macular Degeneration Aggravates Subretinal Inflammation by Impairing Monocyte Elimination. Immunity, 2020, 53, 429-441.e8.	14.3	47
10	Insulin inhibits inflammation-induced cone death in retinal detachment. Journal of Neuroinflammation, 2020, 17, 358.	7.2	9
11	Metabolic and Redox Signaling of the Nucleoredoxin-Like-1 Gene for the Treatment of Genetic Retinal Diseases. International Journal of Molecular Sciences, 2020, 21, 1625.	4.1	20
12	Functional Genomics of the Retina to Elucidate its Construction and Deconstruction. International Journal of Molecular Sciences, 2019, 20, 4922.	4.1	7
13	Pathway Analysis Integrating Genome-Wide and Functional Data Identifies <i>PLCG2</i> as a Candidate Gene for Age-Related Macular Degeneration., 2019, 60, 4041.		10
14	Mechanisms Underlying the Visual Benefit of Cell Transplantation for the Treatment of Retinal Degenerations. International Journal of Molecular Sciences, 2019, 20, 557.	4.1	8
15	A Mathematical Analysis of Aerobic Glycolysis Triggered by Glucose Uptake in Cones. Scientific Reports, 2019, 9, 4162.	3.3	18
16	Is Retinal Metabolic Dysfunction at the Center of the Pathogenesis of Age-related Macular Degeneration?. International Journal of Molecular Sciences, 2019, 20, 762.	4.1	72
17	Otx2-Genetically Modified Retinal Pigment Epithelial Cells Rescue Photoreceptors after Transplantation. Molecular Therapy, 2018, 26, 219-237.	8.2	19
18	Maintaining Cone Function in Rod-Cone Dystrophies. Advances in Experimental Medicine and Biology, 2018, 1074, 499-509.	1.6	15

#	Article	IF	CITATIONS
19	Metabolic and redox signaling in the retina. Cellular and Molecular Life Sciences, 2017, 74, 3649-3665.	5.4	83
20	Further Insights into the Ciliary Gene and Protein KIZ and Its Murine Ortholog PLK1S1 Mutated in Rod-Cone Dystrophy. Genes, 2017, 8, 277.	2.4	7
21	Cell Signaling with Extracellular Thioredoxin and Thioredoxin-Like Proteins: Insight into Their Mechanisms of Action. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-11.	4.0	37
22	Identification of an Alternative Splicing Product of the Otx2 Gene Expressed in the Neural Retina and Retinal Pigmented Epithelial Cells. PLoS ONE, 2016, 11, e0150758.	2.5	8
23	Mathematical Model of the Role of RdCVF in the Coexistence of Rods and Cones in a Healthy Eye. Bulletin of Mathematical Biology, 2016, 78, 1394-1409.	1.9	19
24	The Thioredoxin Encoded by the Rod-Derived Cone Viability Factor Gene Protects Cone Photoreceptors Against Oxidative Stress. Antioxidants and Redox Signaling, 2016, 24, 909-923.	5.4	38
25	A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nature Genetics, 2016, 48, 134-143.	21.4	1,167
26	Thioredoxin rod-derived cone viability factor protects against photooxidative retinal damage. Free Radical Biology and Medicine, 2015, 81, 22-29.	2.9	33
27	Rod-Derived Cone Viability Factor Promotes Cone Survival by Stimulating Aerobic Glycolysis. Cell, 2015, 161, 817-832.	28.9	320
28	Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration. Journal of Clinical Investigation, 2015, 125, 105-116.	8.2	143
29	Genotypic and Phenotypic Characterization of P23H Line 1 Rat Model. PLoS ONE, 2015, 10, e0127319.	2.5	51
30	Cancer metabolism of cone photoreceptors. Oncotarget, 2015, 6, 32285-32286.	1.8	13
31	Spare the Rod, Spoil the Degeneration. Journal of Pediatric Ophthalmology and Strabismus, 2014, 51, 74-74.	0.7	1
32	Chapter 3 - Restoring Vision to the Blind: Gene Therapy for Vision Loss. Translational Vision Science and Technology, 2014, 3, 5.	2.2	3
33	Chapter 6 - Restoring Vision to the Blind: Neuroprotection. Translational Vision Science and Technology, 2014, 3, 8.	2.2	1
34	The familial dementia gene revisited: a missense mutation revealed by whole-exome sequencing identifies ITM2B as a candidate gene underlying a novel autosomal dominant retinal dystrophy in a large family. Human Molecular Genetics, 2014, 23, 491-501.	2.9	29
35	Therapeutic strategy for handling inherited retinal degenerations in a gene-independent manner using rod-derived cone viability factors. Comptes Rendus - Biologies, 2014, 337, 207-213.	0.2	13
36	Whole-Exome Sequencing Identifies KIZ as a Ciliary Gene Associated with Autosomal-Recessive Rod-Cone Dystrophy. American Journal of Human Genetics, 2014, 94, 625-633.	6.2	52

#	Article	IF	Citations
37	Rare and common variants in extracellular matrix gene Fibrillin 2 (FBN2) are associated with macular degeneration. Human Molecular Genetics, 2014, 23, 5827-5837.	2.9	52
38	Vibratome Sectioning Mouse Retina to Prepare Photoreceptor Cultures. Journal of Visualized Experiments, 2014, , .	0.3	11
39	Functional rescue of cone photoreceptors in retinitis pigmentosa. Graefe's Archive for Clinical and Experimental Ophthalmology, 2013, 251, 1669-1677.	1.9	21
40	Seven new loci associated with age-related macular degeneration. Nature Genetics, 2013, 45, 433-439.	21.4	687
41	Transcriptomic Analysis of Human Retinal Surgical Specimens Using jouRNAl. Journal of Visualized Experiments, 2013, , .	0.3	6
42	Nxnl2 splicing results in dual functions in neuronal cell survival and maintenance of cell integrity. Human Molecular Genetics, 2012, 21, 2298-2311.	2.9	21
43	Complement factor H genetic variant and age-related macular degeneration: effect size, modifiers and relationship to disease subtype. International Journal of Epidemiology, 2012, 41, 250-262.	1.9	79
44	Genome-wide association study of age-related macular degeneration identifies associated variants in the TNXB–FKBPL–NOTCH4 region of chromosome 6p21.3. Human Molecular Genetics, 2012, 21, 4138-4150.	2.9	80
45	Whole-Exome Sequencing Identifies Mutations in GPR179 Leading to Autosomal-Recessive Complete Congenital Stationary Night Blindness. American Journal of Human Genetics, 2012, 91, 209.	6.2	O
46	Development and application of a next-generation-sequencing (NGS) approach to detect known and novel gene defects underlying retinal diseases. Orphanet Journal of Rare Diseases, 2012, 7, 8.	2.7	144
47	Whole-Exome Sequencing Identifies Mutations in GPR179 Leading to Autosomal-Recessive Complete Congenital Stationary Night Blindness. American Journal of Human Genetics, 2012, 90, 321-330.	6.2	121
48	<i>CRB1</i> mutations in inherited retinal dystrophies. Human Mutation, 2012, 33, 306-315.	2.5	153
49	Taurine Provides Neuroprotection against Retinal Ganglion Cell Degeneration. PLoS ONE, 2012, 7, e42017.	2.5	74
50	Transcriptomic Analysis of Human Retinal Detachment Reveals Both Inflammatory Response and Photoreceptor Death. PLoS ONE, 2011, 6, e28791.	2.5	42
51	â,, [®] -conome: an automated tissue counting platform of cone photoreceptors for rodent models of retinitis pigmentosa. BMC Ophthalmology, 2011, 11, 38.	1.4	10
52	Gene Therapy in Ophthalmology: Validation on Cultured Retinal Cells and Explants from Postmortem Human Eyes. Human Gene Therapy, 2011, 22, 587-593.	2.7	44
53	The disruption of the rod-derived cone viability gene leads to photoreceptor dysfunction and susceptibility to oxidative stress. Cell Death and Differentiation, 2010, 17, 1199-1210.	11.2	73
54	Expression of Rod-Derived Cone Viability Factor: Dual Role of CRX in Regulating Promoter Activity and Cell-Type Specificity. PLoS ONE, 2010, 5, e13075.	2.5	8

#	Article	lF	Citations
55	The homeobox gene CHX10/VSX2 regulates RdCVF promoter activity in the inner retina. Human Molecular Genetics, 2010, 19, 250-261.	2.9	40
56	Altered Expression of Metallothionein-I and -II and Their Receptor Megalin in Inherited Photoreceptor Degeneration., 2010, 51, 4809.		25
57	Rod-Derived Cone Viability Factor for Treating Blinding Diseases: From Clinic to Redox Signaling. Science Translational Medicine, 2010, 2, 26ps16.	12.4	106
58	Transplantation of Photoreceptor and Total Neural Retina Preserves Cone Function in P23H Rhodopsin Transgenic Rat. PLoS ONE, 2010, 5, e13469.	2.5	36
59	Study of Gene-Targeted Mouse Models of Splicing Factor Gene <i>Prpf31</i> Implicated in Human Autosomal Dominant Retinitis Pigmentosa (RP)., 2009, 50, 5927.		52
60	Imaging and Modelling of a Degenerative Disease of Retina. , 2009, , .		1
61	The Thioredoxin-like Protein Rod-derived Cone Viability Factor (RdCVFL) Interacts with TAU and Inhibits Its Phosphorylation in the Retina. Molecular and Cellular Proteomics, 2009, 8, 1206-1218.	3.8	52
62	Functional Cone Rescue by RdCVF Protein in a Dominant Model of Retinitis Pigmentosa. Molecular Therapy, 2009, 17, 787-795.	8.2	147
63	Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nature Genetics, 2009, 41, 1094-1099.	21.4	2,155
64	TRPM1 Is Mutated in Patients with Autosomal-Recessive Complete Congenital Stationary Night Blindness. American Journal of Human Genetics, 2009, 85, 720-729.	6.2	207
65	RETINOBASE: a web database, data mining and analysis platform for gene expression data on retina. BMC Genomics, 2008, 9, 208.	2.8	15
66	The Search for Rod-Dependent Cone Viability Factors, Secreted Factors Promoting Cone Viability. Novartis Foundation Symposium, 2008, , 117-130.	1.1	9
67	Filtering genes to improve sensitivity in oligonucleotide microarray data analysis. Nucleic Acids Research, 2007, 35, e102-e102.	14.5	42
68	Rod-derived Cone Viability Factor-2 is a novel bifunctional-thioredoxin-like protein with therapeutic potential. BMC Molecular Biology, 2007, 8, 74.	3.0	58
69	Retinal Degenerations: From Cell Signaling to Cell Therapy; Pre-Clinical and Clinical Issues. Current Gene Therapy, 2007, 7, 121-129.	2.0	29
70	PromAn: an integrated knowledge-based web server dedicated to promoter analysis. Nucleic Acids Research, 2006, 34, W578-W583.	14.5	13
71	Disease-Associated Variants of the Rod-derived Cone Viability Factor (RdCVF) in Leber Congenital Amaurosis., 2006, 572, 9-14.		8
72	Cone Survival: Identification of RdCVF. , 2006, 572, 315-319.		9

#	Article	IF	CITATIONS
73	GOAnno: GO annotation based on multiple alignment. Bioinformatics, 2005, 21, 2095-2096.	4.1	36
74	Rhodopsin maturation defects induce photoreceptor death by apoptosis: a fly model for RhodopsinPro23His human retinitis pigmentosa. Human Molecular Genetics, 2005, 14, 2547-2557.	2.9	51
75	Identification of Gene Expression Changes Associated with the Progression of Retinal Degeneration in therd1Mouse., 2004, 45, 2929.		88
76	Identification and characterization of rod-derived cone viability factor. Nature Genetics, 2004, 36, 755-759.	21.4	463
77	Inherited retinal degenerations: therapeutic prospects. Biology of the Cell, 2004, 96, 261-269.	2.0	84
78	DNA repair in the degenerating mouse retina. Molecular and Cellular Neurosciences, 2004, 26, 441-449.	2.2	23
79	Inherited retinal degenerations: therapeutic prospects. Biology of the Cell, 2004, 96, 261-269.	2.0	57
80	Differential Proteomic Analysis of the Mouse Retina. Molecular and Cellular Proteomics, 2003, 2, 494-505.	3.8	42
81	Partial Characterization of Retina-Derived Cone Neuroprotection in Two Culture Models of Photoreceptor Degeneration., 2003, 44, 818.		115
82	Identification de gÃ"nes candidats responsables de pathologies rétiniennes. Medecine/Sciences, 2002, 18, 528-529.	0.2	0
83	Chapter 47 Rod-cone interdependence: implications for therapy of photoreceptor cell diseases. Progress in Brain Research, 2001, 131, 649-661.	1.4	40
84	Rod–Cone Interactions:. Progress in Retinal and Eye Research, 2001, 20, 451-467.	15.5	77
85	Fibroblast Growth Factor Receptor 4 (FGFR4) Is Expressed in Adult Rat and Human Retinal Photoreceptors and Neurons. Journal of Molecular Neuroscience, 1999, 13, 187-198.	2.3	33
86	Rods Produce a Diffusible Factor Promoting Cone Photoreceptor Survival In Vivo and in Vitro., 1999,, 509-517.		0
87	MDM2 expression during mouse embryogenesis and the requirement of p53. Mechanisms of Development, 1998, 74, 189-193.	1.7	43
88	Expression of p21 WAF1/CIP1 during mouse odontogenesis. European Journal of Oral Sciences, 1998, 106, 104-111.	1.5	29
89	Normal retina releases a diffusible factor stimulating cone survival in the retinal degeneration mouse. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 8357-8362.	7.1	188
90	Transplantations rétiniennes : résultats, perspectives et interrogations Medecine/Sciences, 1998, 14, 1337.	0.2	0

#	Article	IF	CITATIONS
91	The MDM2 C-terminal Region Binds to TAFII250 and Is Required for MDM2 Regulation of the Cyclin A Promoter. Journal of Biological Chemistry, 1997, 272, 30651-30661.	3.4	71
92	Functional interactions between p53 and the TFIIH complex are affected by tumour-associated mutations EMBO Journal, 1996, 15, 1615-1624.	7.8	146
93	Bgl I reveals two polymorphic sites in the human inter-alpha-trypsin inhibitor heavy chain gene ITI H2. Nucleic Acids Research, 1990, 18, 386-386.	14.5	4
94	Structural analysis of the human inter-s-trypsin inhibitor light-chain gene. FEBS Journal, 1990, 191, 131-139.	0.2	51
95	An hypervariable polymorphism detected in the human inter-α-trypsin inhibitor heavy chain gene ITIH2. Nucleic Acids Research, 1990, 18, 1319-1319.	14.5	5
96	Two RFLPs in human inter-alpha-trypsin inhibitor heavy chain gene ITIH2 on chromosome 10. Nucleic Acids Research, 1989, 17, 5418-5418.	14.5	3
97	Eco 0 109 reveals two polymorphic sites in the human Inter-alpha-trypsin inhibitor light chain gene, ITl L. Nucleic Acids Research, 1989, 17, 1272-1272.	14.5	1
98	An Apa I polymorphism for the human inter- \hat{l} ±-trypsin inhibitor heavy chain gene ITIH1 on chromosome 3. Nucleic Acids Research, 1989, 17, 2875-2875.	14.5	3
99	Dra I polymorphism in the human inter-alpha-trypsin inhibitor heavy chain gene ITIHl. Nucleic Acids Research, 1989, 17, 5419-5419.	14.5	4
100	Sst I RFLP in the human inter-α-trypsin inhibitor heavy chain gene ITIH1. Nucleic Acids Research, 1988, 16, 11852-11852.	14.5	7
101	BstXI RFLP in the human inter-alpha-trypsin inhibitor light chain gene. Nucleic Acids Research, 1988, 16, 2744-2744.	14.5	5