Yiming He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3314519/publications.pdf

Version: 2024-02-01

		23500	37111
139	9,987	58	96
papers	citations	h-index	g-index
139	139	139	7984
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	New Application of Z-Scheme Ag ₃ PO ₄ /g-C ₃ N ₄ Composite in Converting CO ₂ to Fuel. Environmental Science & Environmental Sc	4.6	812
2	Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation. Applied Catalysis B: Environmental, 2013, 129, 255-263.	10.8	426
3	Z-scheme SnO2â^'x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction. Solar Energy Materials and Solar Cells, 2015, 137, 175-184.	3.0	364
4	In situ preparation of g-C3N4/Bi4O5I2 complex and its elevated photoactivity in Methyl Orange degradation under visible light. Journal of Environmental Sciences, 2020, 87, 149-162.	3.2	227
5	Efficient degradation of RhB over GdVO4/g-C3N4 composites under visible-light irradiation. Chemical Engineering Journal, 2013, 215-216, 721-730.	6.6	219
6	Membrane fouling in a membrane bioreactor: High filtration resistance of gel layer and its underlying mechanism. Water Research, 2016, 102, 82-89.	5.3	209
7	Enhanced photodegradation activity of methyl orange over Z-scheme type MoO ₃ –g-C ₃ N ₄ composite under visible light irradiation. RSC Advances, 2014, 4, 13610-13619.	1.7	205
8	Preparation of interstitial carbon doped BiOI for enhanced performance in photocatalytic nitrogen fixation and methyl orange degradation. Journal of Colloid and Interface Science, 2019, 539, 563-574.	5.0	205
9	Review of the progress in preparing nano TiO2: An important environmental engineering material. Journal of Environmental Sciences, 2014, 26, 2139-2177.	3.2	202
10	Microwave heating preparation of phosphorus doped g-C3N4 and its enhanced performance for photocatalytic H2 evolution in the help of Ag3PO4 nanoparticles. International Journal of Hydrogen Energy, 2020, 45, 14354-14367.	3.8	195
11	Membrane fouling in a submerged membrane bioreactor: Impacts of floc size. Chemical Engineering Journal, 2015, 269, 328-334.	6.6	190
12	Membrane fouling caused by biological foams in a submerged membrane bioreactor: Mechanism insights. Water Research, 2020, 181, 115932.	5.3	189
13	In-situ synthesis of AgNbO3/g-C3N4 photocatalyst via microwave heating method for efficiently photocatalytic H2 generation. Journal of Colloid and Interface Science, 2019, 534, 163-171.	5.0	174
14	Facile fabrication of novel Ag2S/K-g-C3N4 composite and its enhanced performance in photocatalytic H2 evolution. Journal of Colloid and Interface Science, 2020, 568, 117-129.	5.0	167
15	Synthesis of carbon-doped KNbO3 photocatalyst with excellent performance for photocatalytic hydrogen production. Solar Energy Materials and Solar Cells, 2018, 179, 45-56.	3.0	163
16	High piezo/photocatalytic efficiency of Ag/Bi5O7I nanocomposite using mechanical and solar energy for N2 fixation and methyl orange degradation. Green Energy and Environment, 2023, 8, 283-295.	4.7	139
17	Comparing Two New Composite Photocatalysts, <i>t</i> -t-taVO ₄ /g-C ₃ N ₄ and <i>m</i> -taVO ₄ /g-C ₃ N ₄ , for Their Structures and Performances. Industrial & Amp: Engineering Chemistry Research, 2014, 53, 5905-5915.	1.8	137
18	Rapid and energy-efficient preparation of boron doped g-C3N4 with excellent performance in photocatalytic H2-evolution. International Journal of Hydrogen Energy, 2018, 43, 19984-19989.	3.8	137

#	Article	IF	CITATIONS
19	Fouling mechanisms of gel layer in a submerged membrane bioreactor. Bioresource Technology, 2014, 166, 295-302.	4.8	133
20	Influence of some parameters on the synthesis of nanosized NiO material by modified sol–gel method. Materials Letters, 2007, 61, 3174-3178.	1.3	131
21	Effects of hydrophilicity/hydrophobicity of membrane on membrane fouling in a submerged membrane bioreactor. Bioresource Technology, 2015, 175, 59-67.	4.8	130
22	Synthesis, Characterization, and Activity Evaluation of DyVO ₄ /g-C ₃ N ₄ Composites under Visible-Light Irradiation. Industrial & Dyvo Research, 2012, 51, 14729-14737.	1.8	128
23	High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst. Applied Catalysis B: Environmental, 2015, 168-169, 1-8.	10.8	128
24	Synthesis and characterization of a ZrO ₂ /g-C ₃ N ₄ composite with enhanced visible-light photoactivity for rhodamine degradation. RSC Advances, 2014, 4, 40029-40035.	1.7	121
25	A new insight into membrane fouling mechanism in submerged membrane bioreactor: Osmotic pressure during cake layer filtration. Water Research, 2013, 47, 2777-2786.	5.3	117
26	Different fouling propensities of loosely and tightly bound extracellular polymeric substances (EPSs) and the related fouling mechanisms in a membrane bioreactor. Chemosphere, 2020, 255, 126953.	4.2	112
27	A novel Bi ₂ S ₃ /KTa _{0.75} Nb _{0.25} O ₃ nanocomposite with high efficiency for photocatalytic and piezocatalytic N ₂ fixation. Journal of Materials Chemistry A. 2021. 9. 13344-13354.	5.2	109
28	Fabrication and characterization of hollow CdMoO4 coupled g-C3N4 heterojunction with enhanced photocatalytic activity. Journal of Hazardous Materials, 2015, 299, 333-342.	6.5	104
29	In-situ preparation of Z-scheme AgI/Bi5O7I hybrid and its excellent photocatalytic activity. Applied Surface Science, 2016, 387, 912-920.	3.1	101
30	Rapid fabrication of KTa0.75Nb0.25/g-C3N4 composite via microwave heating for efficient photocatalytic H2 evolution. Fuel, 2019, 241, 1-11.	3.4	101
31	Novel insights into membrane fouling in a membrane bioreactor: Elucidating interfacial interactions with real membrane surface. Chemosphere, 2018, 210, 769-778.	4.2	97
32	Effects of molecular weight distribution of soluble microbial products (SMPs) on membrane fouling in a membrane bioreactor (MBR): Novel mechanistic insights. Chemosphere, 2020, 248, 126013.	4.2	97
33	Facile preparation of novel nickel sulfide modified KNbO3 heterojunction composite and its enhanced performance in photocatalytic nitrogen fixation. Journal of Colloid and Interface Science, 2021, 590, 548-560.	5.0	97
34	Cadmium sulfide modified zinc oxide heterojunction harvesting ultrasonic mechanical energy for efficient decomposition of dye wastewater. Journal of Colloid and Interface Science, 2022, 607, 412-422.	5.0	97
35	Giant enhancement of photocatalytic H2 production over KNbO3 photocatalyst obtained via carbon doping and MoS2 decoration. International Journal of Hydrogen Energy, 2018, 43, 4347-4354.	3.8	91
36	A novel strategy based on magnetic field assisted preparation of magnetic and photocatalytic membranes with improved performance. Journal of Membrane Science, 2020, 612, 118378.	4.1	90

#	Article	IF	CITATIONS
37	CuS/KTa0.75Nb0.25O3 nanocomposite utilizing solar and mechanical energy for catalytic N2 fixation. Journal of Colloid and Interface Science, 2021, 603, 220-232.	5.0	90
38	Photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran on metal-free g-C3N4 under visible light irradiation. Molecular Catalysis, 2017, 436, 10-18.	1.0	87
39	Thermodynamic analysis of membrane fouling in a submerged membrane bioreactor and its implications. Bioresource Technology, 2013, 146, 7-14.	4.8	83
40	Visible light photocatalytic activities of ZnFe2O4 loaded by Ag3VO4 heterojunction composites. Journal of Alloys and Compounds, 2013, 549, 105-113.	2.8	80
41	Synthesis, characterization and photocatalytic activity of visible-light plasmonic photocatalyst AgBr-SmVO4. Applied Catalysis B: Environmental, 2013, 138-139, 95-103.	10.8	78
42	Synthesis and photocatalytic activity of $SiO2/g$ -C3N4 composite photocatalyst. Materials Letters, 2014, 115, 53-56.	1.3	77
43	Realization of quantifying interfacial interactions between a randomly rough membrane surface and a foulant particle. Bioresource Technology, 2017, 226, 220-228.	4.8	77
44	In situ preparation of Z-scheme MoO3/g-C3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation. Journal of Materials Research, 2017, 32, 3660-3668.	1.2	77
45	KNbO3/ZnO heterojunction harvesting ultrasonic mechanical energy and solar energy to efficiently degrade methyl orange. Ultrasonics Sonochemistry, 2021, 78, 105754.	3.8	77
46	Photocatalytic degradation of RhB over MgFe2O4/TiO2 composite materials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1497-1504.	1.7	76
47	Novel Fe2(MoO4)3/g-C3N4 heterojunction for efficient contaminant removal and hydrogen production under visible light irradiation. Solar Energy, 2016, 139, 355-364.	2.9	7 5
48	Mechanism analyses of high specific filtration resistance of gel and roles of gel elasticity related with membrane fouling in a membrane bioreactor. Bioresource Technology, 2018, 257, 39-46.	4.8	75
49	Photocatalytic degradation of methylene blue on CaBi6O10/Bi2O3 composites under visible light. Chemical Engineering Journal, 2012, 189-190, 473-481.	6.6	73
50	Fabrication of a Z-scheme AgBr/Bi ₄ O ₅ Br ₂ nanocomposite and its high efficiency in photocatalytic N ₂ fixation and dye degradation. Inorganic Chemistry Frontiers, 2019, 6, 3083-3092.	3.0	71
51	Quantification of interfacial interactions between a rough sludge floc and membrane surface in a membrane bioreactor. Journal of Colloid and Interface Science, 2017, 490, 710-718.	5.0	69
52	Novel Ternary MoS ₂ /C-ZnO Composite with Efficient Performance in Photocatalytic NH ₃ Synthesis under Simulated Sunlight. ACS Sustainable Chemistry and Engineering, 2018, 6, 14866-14879.	3.2	67
53	A new method for modeling rough membrane surface and calculation of interfacial interactions. Bioresource Technology, 2016, 200, 451-457.	4.8	66
54	Preparation of a NiO/KNbO ₃ nanocomposite <i>via</i> a photodeposition method and its superior performance in photocatalytic N ₂ fixation. Sustainable Energy and Fuels, 2020, 4, 1112-1117.	2.5	66

#	Article	IF	Citations
55	Novel CaBi6O10 photocatalyst for methylene blue degradation under visible light irradiation. Catalysis Communications, 2012, 18, 161-164.	1.6	65
56	One-step degradation of cellulose to 5-hydroxymethylfurfural in ionic liquid under mild conditions. Carbohydrate Polymers, 2015, 117, 694-700.	5.1	63
57	Novel application of Ag/PbBiO2I nanocomposite in piezocatalytic degradation of rhodamine B via harvesting ultrasonic vibration energy. Ultrasonics Sonochemistry, 2021, 78, 105729.	3.8	63
58	Preparation and characterization of Ni–Zr–O nanoparticles and its catalytic behavior for ethane oxidative dehydrogenation. Applied Surface Science, 2012, 258, 4922-4928.	3.1	60
59	High efficiency photocatalytic conversion of CO ₂ with H ₂ O over Pt/TiO ₂ nanoparticles. RSC Advances, 2014, 4, 44442-44451.	1.7	59
60	Synthesis of KNbO3/g-C3N4 composite and its new application in photocatalytic H2 generation under visible light irradiation. Journal of Materials Science, 2018, 53, 7453-7465.	1.7	57
61	Enhanced photocatalytic activity of g-C 3 N 4 via modification of NiMoO 4 nanorods. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 514, 98-106.	2.3	56
62	Enhanced visible-light photoactivity of g-C3N4 via Zn2SnO4 modification. Applied Surface Science, 2015, 329, 143-149.	3.1	53
63	A novel Z-scheme Bi-Bi ₂ O ₃ /KTa _{0.5} Nb _{0.5} O ₃ heterojunction for efficient photocatalytic conversion of N ₂ to NH ₃ . Inorganic Chemistry Frontiers, 2022, 9, 2714-2724.	3.0	53
64	Visible-light responsive plasmonic Ag ₂ O/Ag/g-C ₃ N ₄ nanosheets with enhanced photocatalytic degradation of Rhodamine B. Journal of Materials Research, 2016, 31, 2252-2260.	1.2	51
65	Novel platinum-bismuth alloy loaded KTa0.5Nb0.5O3 composite photocatalyst for effective nitrogen-to-ammonium conversion. Journal of Colloid and Interface Science, 2022, 618, 362-374.	5.0	51
66	Hydrolytic synthesis of flowerlike BiOCl and its photocatalytic performance under visible light. Materials Letters, 2013, 108, 168-171.	1.3	48
67	Application of Ag/AgBr/GdVO 4 composite photocatalyst in wastewater treatment. Journal of Environmental Sciences, 2018, 63, 68-75.	3.2	48
68	Effect of synthesis method on the physical and catalytic property of nanosized NiO. Materials Letters, 2007, 61, 2679-2682.	1.3	46
69	Synthesis of carbon doped KTaO3 and its enhanced performance in photocatalytic H2 generation. Catalysis Communications, 2018, 109, 6-9.	1.6	45
70	Influence of membrane surface roughness on interfacial interactions with sludge flocs in a submerged membrane bioreactor. Journal of Colloid and Interface Science, 2015, 446, 84-90.	5.0	44
71	Preparation, characterization, and photocatalytic activity of novel AgBr/ZIF-8 composites for water purification. Advanced Powder Technology, 2020, 31, 439-447.	2.0	43
72	Hydrothermal preparation of carbon modified KNb3O8 nanosheets for efficient photocatalytic H2 evolution. Ceramics International, 2020, 46, 11421-11426.	2.3	43

#	Article	IF	CITATIONS
73	Photodegradation of RhB over YVO4/g-C3N4 composites under visible light irradiation. RSC Advances, 2013, 3, 20862.	1.7	42
74	Facile preparation of Ag2S/KTa0.5Nb0.5O3 heterojunction for enhanced performance in catalytic nitrogen fixation via photocatalysis and piezo-photocatalysis. Green Energy and Environment, 2023, 8, 1630-1643.	4.7	42
75	Microwave heating assisted synthesis of novel SnSe/g-C3N4 composites for effective photocatalytic H2 production. Journal of Industrial and Engineering Chemistry, 2019, 80, 74-82.	2.9	41
76	Synthesis, characterization and photocatalytic performance of VDyO composite under visible light irradiation. Chemical Engineering Journal, 2011, 169, 50-57.	6.6	40
77	Enhanced photodegradation activity of Rhodamine B by Co3O4/Ag3VO4 under visible light irriadiation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 45-52.	1.7	40
78	Effects of surface charge on interfacial interactions related to membrane fouling in a submerged membrane bioreactor based on thermodynamic analysis. Journal of Colloid and Interface Science, 2016, 465, 33-41.	5.0	39
79	A comparative study on the photocatalytic activities of two visible-light plasmonic photocatalysts: AgCl-SmVO4 and Agl-SmVO4 composites. Applied Catalysis A: General, 2014, 472, 143-151.	2.2	38
80	Fabrication, characterization and photocatalytic activity of g-C $<$ sub $>$ 3 $<$ /sub $>$ N $<$ sub $>$ 4 $<$ /sub $>$ coupled with FeVO $<$ sub $>$ 4 $<$ /sub $>$ nanorods. RSC Advances, 2015, 5, 27933-27939.	1.7	38
81	Fractal reconstruction of rough membrane surface related with membrane fouling in a membrane bioreactor. Bioresource Technology, 2016, 216, 817-823.	4.8	37
82	Photodeposition of CoOx nanoparticles on BiFeO3 nanodisk for efficiently piezocatalytic degradation of rhodamine B by utilizing ultrasonic vibration energy. Ultrasonics Sonochemistry, 2021, 80, 105813.	3.8	36
83	Effects of ionic strength on membrane fouling in a membrane bioreactor. Bioresource Technology, 2014, 156, 35-41.	4.8	35
84	Preparation of Bi3O4Br/BiOCl composite via ion-etching method and its excellent photocatalytic activity. Materials Letters, 2018, 210, 194-198.	1.3	34
85	Novel carbon modified KTa0.75Nb0.25O3 nanocubes with excellent efficiency in photocatalytic H2 evolution. Fuel, 2018, 233, 486-496.	3.4	33
86	Deep oxidative desulfurization of model oil catalyzed by magnetic MoO ₃ /Fe ₃ O ₄ . RSC Advances, 2015, 5, 69388-69393.	1.7	32
87	Synthesis of MoS2/YVO4 composite and its high photocatalytic performance in methyl orange degradation and H2 evolution. Solar Energy, 2018, 171, 426-434.	2.9	32
88	Preparation, characterization and activity evaluation of V2O5–LaVO4 composites under visible light irradiation. Journal of Molecular Catalysis A, 2011, 337, 61-67.	4.8	31
89	Thermodynamic analysis of effects of contact angle on interfacial interactions and its implications for membrane fouling control. Bioresource Technology, 2016, 201, 245-252.	4.8	30
90	Effectively H2 generation over CdS/KTa0.75Nb0.25O3 composite via water splitting. Journal of Colloid and Interface Science, 2019, 552, 622-632.	5.0	30

#	Article	IF	Citations
91	Oxidative Degradation of Chitosan to the Low Molecular Water-Soluble Chitosan over Peroxotungstate as Chemical Scissors. PLoS ONE, 2014, 9, e100743.	1.1	29
92	Synthesis of AgCl/Bi3O4Cl composite and its photocatalytic activity in RhB degradation under visible light. Catalysis Communications, 2016, 76, 19-22.	1.6	29
93	Preparation, characterization of Bi 3 O 4 Cl/g-C 3 N 4 composite and its photocatalytic activity in dye degradation. Journal of Water Process Engineering, 2017, 18, 65-72.	2.6	29
94	Photodegradation of organics over a new composite catalyst V2O5/SmVO4. Catalysis Communications, 2009, 10, 1354-1357.	1.6	28
95	Membrane fouling in a submerged membrane bioreactor with focus on surface properties and interactions of cake sludge and bulk sludge. Bioresource Technology, 2014, 169, 213-219.	4.8	27
96	Low temperature catalytic performance of nanosized TiNiO for oxidative dehydrogenation of propane to propene. Applied Surface Science, 2006, 252, 5220-5226.	3.1	25
97	Enhanced photodegradation activity of Rhodamine B by MgFe2O4/Ag3VO4 under visible light irradiation. Catalysis Communications, 2013, 30, 14-18.	1.6	25
98	Photodegradation of acetone over V-Gd-O composite catalysts under visible light. Journal of Hazardous Materials, 2010, 180, 675-682.	6.5	24
99	Visible light photodegradation of organics over VYO composite catalyst. Journal of Hazardous Materials, 2009, 169, 855-860.	6.5	22
100	Preparation and Characterization of Ag‣oaded Sm <scp><scp>VO</scp></scp> ₄ for Photocatalysis Application. Photochemistry and Photobiology, 2013, 89, 529-535.	1.3	22
101	Experimental evidence for osmotic pressure-induced fouling in a membrane bioreactor. Bioresource Technology, 2014, 158, 119-126.	4.8	22
102	One step and fast preparation of VOx/g-C3N4 photocatalyst via microwave heating for effective degradation of RhB under visible light. Journal of Physics and Chemistry of Solids, 2020, 136, 109122.	1.9	21
103	Thiophene insertion and lanthanum molybdate modification of g-C3N4 for enhanced visible-light-driven photoactivity in tetracycline degradation. Applied Surface Science, 2022, 592, 153337.	3.1	21
104	A new approach to construct three-dimensional surface morphology of sludge flocs in a membrane bioreactor. Bioresource Technology, 2016, 219, 521-526.	4.8	20
105	Selective photocatalytic carbon dioxide conversion with Pt@Ag-TiO2 nanoparticles. Catalysis Communications, 2018, 108, 98-102.	1.6	20
106	Low-temperature catalytic performance for oxidative dehydrogenation of propane on nanosized $Ti(Zr)\hat{a}\in "Ni\hat{a}\in "O$ prepared by modified sol $\hat{a}\in "gel$ method. Catalysis Communications, 2006, 7, 268-271.	1.6	18
107	Quantitative assessment of interfacial interactions with rough membrane surface and its implications for membrane selection and fabrication in a MBR. Bioresource Technology, 2015, 179, 367-372.	4.8	18
108	Synthesis of flower-like AgI/Bi ₅ O ₇ I hybrid photocatalysts with enhanced photocatalytic activity in rhodamine B degradation. Journal of Materials Research, 2018, 33, 2385-2395.	1.2	18

#	Article	IF	Citations
109	Preparation of novel AgBr/Bi 3 O 4 Br hybrid with high photocatalytic activity via in situ ion exchange method. Materials Letters, 2017, 193, 73-76.	1.3	17
110	Preparation and Photocatalytic Activity of an Inorganic–Organic Hybrid Photocatalyst Ag2WO4/g-C3N4. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1683-1693.	1.9	17
111	New Application and Excellent Performance of Ag/KNbO ₃ Nanocomposite in Photocatalytic NH ₃ Synthesis. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	17
112	Preparation, characterization, and photocatalytic activity of CdV2O6 nanorods decorated g-C3N4 composite. Journal of Molecular Catalysis A, 2016, 423, 240-247.	4.8	16
113	A novel protocol for the oxidative degradation of chitosan with hydrogen peroxide catalyzed by peroxomolybdate in aqueous solution. RSC Advances, 2013, 3, 12049.	1.7	15
114	Preparation and photocatalytic activity of graphene-modified Ag ₂ S composite. Journal of Experimental Nanoscience, 2016, 11, 433-444.	1.3	15
115	Photodegradation of acetone by visible light-responsive V2O5/EuVO4 composite. Catalysis Today, 2010, 158, 209-214.	2.2	14
116	Preparation and photocataytic property of Sr0.25Bi0.75O1.36 photocatalyst. Materials Letters, 2012, 74, 170-172.	1.3	13
117	Photocatalytic Degradation of Acetone over Sulfated MoO _{<i>x</i>} /MgF ₂ Composite: Effect of Molybdenum Concentration and Calcination Temperature. Industrial & Engineering Chemistry Research, 2011, 50, 7109-7119.	1.8	12
118	Self-template synthesis of PbS nanodendrites and its photocatalytic performance. Journal of Alloys and Compounds, 2011, 509, 9356-9362.	2.8	12
119	The effect of pH value on the synthesis and photocatalytic performance of MnWO4nanostructure by hydrothermal method. Journal of Experimental Nanoscience, 2012, 7, 390-398.	1.3	11
120	Facile and rapid preparation of hexagonal boron nitride via microwave heating method and its application in photocatalytic H2 evolution. Materials Letters, 2020, 266, 127477.	1.3	10
121	Preparation, characterization and photocatalytic activity of graphene doped SmVO4 photocatalyst. Materials Letters, 2014, 122, 17-20.	1.3	9
122	Impacts of morphology on fouling propensity in a membrane bioreactor based on thermodynamic analyses. Journal of Colloid and Interface Science, 2018, 531, 282-290.	5.0	9
123	Visible light-induced degradation of acetone over SO42â°'/MoOx/MgF2 catalysts. Journal of Hazardous Materials, 2009, 168, 551-554.	6.5	8
124	Promotive effect of Bi component on propane partial oxidation over MoBiTeOx/SiO2 catalysts. Journal of Molecular Catalysis A, 2010, 331, 1-6.	4.8	8
125	Ni-Ag-O as catalyst for a novel one-step reaction to convert ethane to ethylene oxide. Catalysis Today, 2010, 158, 258-262.	2.2	8
126	Barium calcium titanate @carbon hybrid materials for high-efficiency room-temperature pyrocatalysis. Ceramics International, 2022, 48, 10498-10505.	2.3	7

#	Article	IF	CITATIONS
127	Catalytic combustion of toluene on Pd/Ce \times La1â^' \times O2/monolith catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2011, 103, 419-429.	0.8	6
128	Convenient and Stereoselective Synthesis of Symmetrical (E)-Stilbenes via Homocoupling of 1,3-Dibenzylbenzotriazolium Bromides. Synlett, 2011, 2011, 1731-1734.	1.0	5
129	Thermodynamic insights into membrane fouling in a membrane bioreactor: Evaluating thermodynamic interactions with Gaussian membrane surface. Journal of Colloid and Interface Science, 2018, 527, 280-288.	5.0	5
130	Preparation and structure of nanostructured Ti–Ni–O with modified low temperature sol–gel route. Materials Letters, 2005, 59, 3106-3108.	1.3	4
131	Preparation and photocatalytic performance of Ag/AgCl-modified cubic ZHS hollow particles. Journal of Materials Research, 2014, 29, 1175-1182.	1.2	4
132	Preparation of AgBr/DyVO4 composite and its excellent photocatalytic activity in RhB degradation under visible light. Research on Chemical Intermediates, 2018, 44, 5153-5167.	1.3	4
133	Facile synthesis of strontium molybdate coupled g-C3N4 composite for effective tetracycline and dyes degradation under visible light. Advanced Powder Technology, 2022, 33, 103573.	2.0	4
134	LOW-TEMPERATURE CATALYTIC PERFORMANCE OF NANOSTRUCTURED Ti⟨font>â€"Niâ€"O PREPARED BY MODIFIED SOL-GEL METHOD. SurfaceReview and Letters, 2007, 14, 611-615.	0.5	3
135	Direct Conversion of Ethane to Ethylene Oxide over Ni–Ag–O Catalyst. Chemistry Letters, 2009, 38, 284-285.	0.7	3
136	Synergetic effect of TeMo5O16 and MoO3 phases in MoTeOx catalysts used for the partial oxidation of propylene. Journal of Natural Gas Chemistry, 2011, 20, 249-255.	1.8	3
137	Author's responses to the comment by Seong-Hoon Yoon on "A new insight into membrane fouling mechanism in submerged membrane bioreactor: Osmotic pressure during cake layer filtration― published in Water Research, vol. 47, pp.Â2777–2786, 2013. Water Research, 2013, 47, 4790-4791.	5.3	3
138	Evolution of MoTeOx/SiO2 and MoBiTeOx/SiO2 catalysts in the partial oxidation of propane to acrolein. Applied Surface Science, 2010, 256, 4317-4321.	3.1	1
139	Synergetic effect of Te2MoO7 and MoO3 (WO3) oxides in the partial oxidation of propylene. Reaction Kinetics, Mechanisms and Catalysis, 2010, 99, 149.	0.8	O