Bo Zhi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3314238/publications.pdf

Version: 2024-02-01

713013 566801 21 812 15 21 citations h-index g-index papers 21 21 21 1336 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Malic Acid Carbon Dots: From Super-resolution Live-Cell Imaging to Highly Efficient Separation. ACS Nano, 2018, 12, 5741-5752.	7.3	135
2	Investigation of phosphorous doping effects on polymeric carbon dots: Fluorescence, photostability, and environmental impact. Carbon, 2018, 129, 438-449.	5.4	115
3	Synthesis, applications and potential photoluminescence mechanism of spectrally tunable carbon dots. Nanoscale, 2019, 11, 20411-20428.	2.8	96
4	Multicolor polymeric carbon dots: synthesis, separation and polyamide-supported molecular fluorescence. Chemical Science, 2021, 12, 2441-2455.	3.7	82
5	Ordered mesoporous MnO2 as a synergetic adsorbent for effective arsenic(iii) removal. Journal of Materials Chemistry A, 2014, 2, 2374.	5.2	50
6	Comparative toxicity assessment of novel Si quantum dots and their traditional Cd-based counterparts using bacteria models <i>Shewanella oneidensis</i> and <i>Bacillus subtilis</i> Environmental Science: Nano, 2018, 5, 1890-1901.	2.2	37
7	A molecular fluorophore in citric acid/ethylenediamine carbon dots identified and quantified by multinuclear solidâ€state nuclear magnetic resonance. Magnetic Resonance in Chemistry, 2020, 58, 1130-1138.	1.1	34
8	Molecular Surface Functionalization of Carbon Materials via Radical-Induced Grafting of Terminal Alkenes. Journal of the American Chemical Society, 2019, 141, 8277-8288.	6.6	31
9	Carbon Dots: A Modular Activity To Teach Fluorescence and Nanotechnology at Multiple Levels. Journal of Chemical Education, 2017, 94, 1143-1149.	1.1	28
10	Microstructures and pharmaceutical properties of ferulic acid agglomerates prepared by different spherical crystallization methods. International Journal of Pharmaceutics, 2020, 574, 118914.	2.6	25
11	Photochemical Transformations of Carbon Dots in Aqueous Environments. Environmental Science & Environm	4.6	24
12	Effect of cationic surfactants on structure and morphology of mesostructured MOFs. RSC Advances, 2012, 2, 5424.	1.7	23
13	Adverse Interactions of Luminescent Semiconductor Quantum Dots with Liposomes and <i>Shewanella oneidensis</i> . ACS Applied Nano Materials, 2018, 1, 4788-4800.	2.4	20
14	Release, detection and toxicity of fragments generated during artificial accelerated weathering of CdSe/ZnS and CdSe quantum dot polymer composites. Environmental Science: Nano, 2018, 5, 1694-1710.	2.2	19
15	Nickel enrichment of next-generation NMC nanomaterials alters material stability, causing unexpected dissolution behavior and observed toxicity to <i>S. oneidensis</i> MR-1 and <i>D. magna</i> Environmental Science: Nano, 2020, 7, 571-587.	2.2	18
16	Improving the properties of \hat{l}^2 -galactosidase from Aspergillus oryzae via encapsulation in aggregated silica nanoparticles. New Journal of Chemistry, 2013, 37, 3793.	1.4	14
17	Anion-templated assembly of three indium–organic frameworks with diverse topologies. CrystEngComm, 2014, 16, 9810-9816.	1.3	14
18	Toxicity Evaluation of Boron- and Phosphorus-Doped Silicon Nanocrystals toward Shewanella oneidensis MR-1. ACS Applied Nano Materials, 2018, 1, 4884-4893.	2.4	14

#	Article	IF	CITATION
19	Tailored synthesis of hierarchical spinous hollow titania hexagonal prisms via a self-template route. Nanoscale, 2014, 6, 13915-13920.	2.8	13
20	Structure–Property Relationships of Amine-rich and Membrane-Disruptive Poly(oxonorbornene)-Coated Gold Nanoparticles. Langmuir, 2018, 34, 4614-4625.	1.6	13
21	Bacterial Toxicity of Germanium Nanocrystals Induced by Doping with Boron and Phosphorus. ACS Applied Nano Materials, 2019, 2, 4744-4755.	2.4	7