Alessandra Del Giudice

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3313421/publications.pdf

Version: 2024-02-01

34 449 12 19 papers citations h-index g-index 37 37 505

37 37 505
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Condensed Supramolecular Helices: The Twisted Sisters of DNA. Angewandte Chemie, 2022, 134, .	2.0	7
2	Fabrication of a New, Low-Cost, and Environment-Friendly Laccase-Based Biosensor by Electrospray Immobilization with Unprecedented Reuse and Storage Performances. ACS Sustainable Chemistry and Engineering, 2022, 10, 1888-1898.	6.7	12
3	Self-assembling nanowires from a linear I,d-peptide conjugated to the dextran end group. International Journal of Biological Macromolecules, 2022, 207, 656-665.	7.5	3
4	Condensed Supramolecular Helices: The Twisted Sisters of DNA. Angewandte Chemie - International Edition, 2022, 61, .	13.8	13
5	Structural Study of a Eutectic Solvent Reveals Hydrophobic Segregation and Lack of Hydrogen Bonding between the Components. ACS Sustainable Chemistry and Engineering, 2022, 10, 6337-6345.	6.7	9
6	Bioderived, chiral and stable 1-dimensional light-responsive nanostructures: Interconversion between tubules and twisted ribbons. Journal of Colloid and Interface Science, 2022, 623, 723-734.	9.4	2
7	On the Role of Water in the Formation of a Deep Eutectic Solvent Based on NiCl ₂ ·6H ₂ O and Urea. Inorganic Chemistry, 2022, 61, 8843-8853.	4.0	11
8	Response to Comment on "Structural Study of a Eutectic Solvent Reveals Hydrophobic Segregation and Lack of Hydrogen Bonding between the Components― ACS Sustainable Chemistry and Engineering, 2022, 10, 8671-8672.	6.7	3
9	Tuning lipid structure by bile salts: Hexosomes for topical administration of catechin. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111564.	5.0	20
10	UV Properties and Loading into Liposomes of Quinoline Derivatives. Colloids and Interfaces, 2021, 5, 28.	2.1	4
11	Synthesis of 2D Porous Crystalline Materials in Simulated Microgravity. Advanced Materials, 2021, 33, e2101777.	21.0	10
12	Transition from molecular- to nano-scale segregation in a deep eutectic solvent - water mixture. Journal of Molecular Liquids, 2021, 331, 115747.	4.9	21
13	Fate of a Deep Eutectic Solvent upon Cosolvent Addition: Choline Chloride–Sesamol 1:3 Mixtures with Methanol. ACS Sustainable Chemistry and Engineering, 2021, 9, 12252-12261.	6.7	15
14	Biosynthesis and physico-chemical characterization of high performing peptide hydrogels@graphene oxide composites. Colloids and Surfaces B: Biointerfaces, 2021, 207, 111989.	5.0	6
15	Revealing the complex self-assembly behaviour of sodium deoxycholate in aqueous solution. Journal of Colloid and Interface Science, 2021, 604, 415-428.	9.4	20
16	Anatomy of a deep eutectic solvent: structural properties of choline chloride : sesamol 1 : 3 co to reline. Physical Chemistry Chemical Physics, 2021, 23, 11746-11754.	mpared	16
17	Design of a fluorescent and clickable Ag ₃₈ (SRN ₃) ₂₄ nanocluster platform: synthesis, modeling and self-assembling. Nanoscale Advances, 2021, 3, 2948-2960.	4.6	2
18	C-12 vs C-3 substituted bile salts: An example of the effects of substituent position and orientation on the self-assembly of steroid surfactant isomers. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110556.	5.0	4

#	Article	IF	CITATIONS
19	Insights about the interaction of methotrexate loaded hydrophilic gold nanoparticles: Spectroscopic, morphological and structural characterizations. Materials Science and Engineering C, 2020, 117, 111337.	7.3	9
20	Effect of temperature on the association behavior in aqueous mixtures of an oppositely charged amphiphilic block copolymer and bile salt. Polymer, 2020, 206, 122871.	3.8	8
21	Poloxamer/sodium cholate co-formulation for micellar encapsulation of doxorubicin with high efficiency for intracellular delivery: An in-vitro bioavailability study. Journal of Colloid and Interface Science, 2020, 579, 551-561.	9.4	19
22	Self-Assembly of Model Amphiphilic Peptides in Nonaqueous Solvents: Changing the Driving Force for Aggregation Does Not Change the Fibril Structure. Langmuir, 2020, 36, 8451-8460.	3 . 5	7
23	Polymorphic Self-Organization of Lauroyl Peptide in Response to pH and Concentration. Langmuir, 2020, 36, 3941-3951.	3.5	7
24	Deoxycholic acid and l-Phenylalanine enrich their hydrogel properties when combined in a zwitterionic derivative. Journal of Colloid and Interface Science, 2019, 554, 453-462.	9.4	9
25	Tuning and controlling the shape of mesoporous silica particles with CTAB/sodium deoxycholate catanionic mixtures. Microporous and Mesoporous Materials, 2019, 279, 423-431.	4.4	20
26	A fluorescence study of the loading and time stability of doxorubicin in sodium cholate/PEO-PPO-PEO triblock copolymer mixed micelles. Journal of Colloid and Interface Science, 2019, 540, 593-601.	9.4	23
27	Block copolymers as bile salt sequestrants: intriguing structures formed in a mixture of an oppositely charged amphiphilic block copolymer and bile salt. Physical Chemistry Chemical Physics, 2019, 21, 12518-12529.	2.8	18
28	<i>Arabidopsis</i> and <i>Chlamydomonas</i> phosphoribulokinase crystal structures complete the redox structural proteome of the Calvin–Benson cycle. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8048-8053.	7.1	25
29	Bile Salts: Natural Surfactants and Precursors of a Broad Family of Complex Amphiphiles. Langmuir, 2019, 35, 6803-6821.	3 . 5	64
30	The effect of fatty acid binding in the acid isomerizations of albumin investigated with a continuous acidification method. Colloids and Surfaces B: Biointerfaces, 2018, 168, 109-116.	5.0	3
31	Time-Dependent pH Scanning of the Acid-Induced Unfolding of Human Serum Albumin Reveals Stabilization of the Native Form by Palmitic Acid Binding. Journal of Physical Chemistry B, 2017, 121, 4388-4399.	2.6	20
32	Structural Response of Human Serum Albumin to Oxidation: Biological Buffer to Local Formation of Hypochlorite. Journal of Physical Chemistry B, 2016, 120, 12261-12271.	2.6	13
33	Unravelling the shape and structural assembly of the photosynthetic GAPDH–CP12–PRK complex from∢i>Arabidopsis thaliana∢/i> by small-angle X-ray scattering analysis. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 2372-2385.	2.5	13
34	Ibuprofen and Propofol Cobinding Effect on Human Serum Albumin Unfolding in Urea. Journal of Physical Chemistry B, 2014, 118, 10043-10051.	2.6	11