Brian P Brooks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3313380/publications.pdf

Version: 2024-02-01

361413 395702 1,274 55 20 33 citations h-index g-index papers 57 57 57 2143 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Uveal coloboma: clinical and basic science update. Current Opinion in Ophthalmology, 2006, 17, 447-470.	2.9	116
2	Molecular genetic findings and clinical correlations in 100 patients with Joubert syndrome and related disorders prospectively evaluated at a single center. Genetics in Medicine, 2017, 19, 875-882.	2.4	100
3	Incomplete penetrance and phenotypic variability characterize Gdf6-attributable oculo-skeletal phenotypes. Human Molecular Genetics, 2009, 18, 1110-1121.	2.9	92
4	Biallelic Mutations in MITF Cause Coloboma, Osteopetrosis, Microphthalmia, Macrocephaly, Albinism, and Deafness. American Journal of Human Genetics, 2016, 99, 1388-1394.	6.2	74
5	Expression profiling during ocular development identifies $2 < i > Nlz < i > genes with a critical role in optic fissure closure. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1462-1467.$	7.1	67
6	Antisense oligonucleotides targeting mutant Ataxin-7 restore visual function in a mouse model of spinocerebellar ataxia type 7. Science Translational Medicine, 2018, 10, .	12.4	63
7	Gene Therapy of Dominant CRX-Leber Congenital Amaurosis using Patient Stem Cell-Derived Retinal Organoids. Stem Cell Reports, 2021, 16, 252-263.	4.8	53
8	Identifying core biological processes distinguishing human eye tissues with precise systems-level gene expression analyses and weighted correlation networks. Human Molecular Genetics, 2018, 27, 3325-3339.	2.9	46
9	Nitisinone improves eye and skin pigmentation defects in a mouse model of oculocutaneous albinism. Journal of Clinical Investigation, 2011, 121, 3914-3923.	8.2	45
10	Joubert Syndrome: Ophthalmological Findings in Correlation with Genotype and Hepatorenal Disease in 99 Patients Prospectively Evaluated at a Single Center. Ophthalmology, 2018, 125, 1937-1952.	5.2	43
11	A secreted WNT-ligand-binding domain of FZD5 generated by a frameshift mutation causes autosomal dominant coloboma. Human Molecular Genetics, 2016, 25, 1382-1391.	2.9	40
12	A broad range of ophthalmologic anomalies is part of the holoprosencephaly spectrum. American Journal of Medical Genetics, Part A, 2011, 155, 2713-2720.	1.2	35
13	Ophthalmic Manifestations and Long-Term Visual Outcomes in Patients with Cobalamin C Deficiency. Ophthalmology, 2016, 123, 571-582.	5.2	34
14	Genotypic and Phenotypic Spectrum of Foveal Hypoplasia. Ophthalmology, 2022, 129, 708-718.	5.2	29
15	Homozygous frameshift mutations in FAT1 cause a syndrome characterized by colobomatous-microphthalmia, ptosis, nephropathy and syndactyly. Nature Communications, 2019, 10, 1180.	12.8	27
16	Neuropsychological phenotypes of 76 individuals with Joubert syndrome evaluated at a single center. American Journal of Medical Genetics, Part A, 2017, 173, 1796-1812.	1.2	26
17	Cystic cerebellar dysplasia and biallelic <i>LAMA1</i> mutations: a lamininopathy associated with tics, obsessive compulsive traits and myopia due to cell adhesion and migration defects. Journal of Medical Genetics, 2016, 53, 318-329.	3.2	25
18	Clinical and molecular phenotyping of a child with Hermansky-Pudlak syndrome-7, an uncommon genetic type of HPS. Molecular Genetics and Metabolism, 2017, 120, 378-383.	1.1	25

#	Article	IF	CITATIONS
19	One-year pilot study on the effects of nitisinone on melanin in patients with OCA-1B. JCI Insight, 2019, 4,	5.0	25
20	Multiple A2E treatments lead to melanization of rod outer segment-challenged ARPE-19 cells. Molecular Vision, 2014, 20, 285-300.	1.1	24
21	Genetics of syndromic ocular coloboma: CHARGE and COACH syndromes. Experimental Eye Research, 2020, 193, 107940.	2.6	23
22	Papillorenal Syndrome-Causing Missense Mutations in PAX2/Pax2 Result in Hypomorphic Alleles in Mouse and Human. PLoS Genetics, 2010, 6, e1000870.	3.5	21
23	aldh7a1 Regulates Eye and Limb Development in Zebrafish. PLoS ONE, 2014, 9, e101782.	2.5	20
24	Atypical and ultra-rare Usher syndrome: a review. Ophthalmic Genetics, 2020, 41, 401-412.	1.2	20
25	Novel TMEM98, MFRP, PRSS56 variants in a large United States high hyperopia and nanophthalmos cohort. Scientific Reports, 2020, 10, 19986.	3.3	17
26	<i>DDX58</i> (RIG-I)-related disease is associated with tissue-specific interferon pathway activation. Journal of Medical Genetics, 2022, 59, 294-304.	3.2	16
27	Highâ€throughput custom capture sequencing identifies novel mutations in colobomaâ€associated genes: Mutation in DNAâ€binding domain of retinoic acid receptor beta affects nuclear localization causing ocular coloboma. Human Mutation, 2020, 41, 678-695.	2.5	13
28	InÂvitro disease modeling of oculocutaneous albinism type 1 and 2 using human induced pluripotent stem cell-derived retinal pigment epithelium. Stem Cell Reports, 2022, 17, 173-186.	4.8	12
29	Systemic Diagnostic Testing in Patients With Apparently Isolated Uveal Coloboma. American Journal of Ophthalmology, 2013, 156, 1159-1168.e4.	3.3	11
30	Cellular and molecular defects in a patient with Hermansky-Pudlak syndrome type 5. PLoS ONE, 2017, 12, e0173682.	2.5	11
31	Minimal Efficacy of Nitisinone Treatment in a Novel Mouse Model of Oculocutaneous Albinism, Type 3., 2018, 59, 4945.		10
32	Brain phenotyping in Moebius syndrome and other congenital facial weakness disorders by diffusion MRI morphometry. Brain Communications, 2020, 2, fcaa014.	3.3	9
33	nlz1 is required for cilia formation in zebrafish embryogenesis. Developmental Biology, 2015, 406, 203-211.	2.0	8
34	PDE6C: Novel Mutations, Atypical Phenotype, and Differences Among Children and Adults., 2020, 61, 1.		8
35	Ocular and Systemic Findings in Adults with Uveal Coloboma. Ophthalmology, 2020, 127, 1772-1774.	5. 2	8
36	Nolz1 expression is required in dopaminergic axon guidance and striatal innervation. Nature Communications, 2020, 11, 3111.	12.8	8

#	Article	lF	CITATIONS
37	Retinoschisis associated with Kearns-Sayre syndrome. Ophthalmic Genetics, 2020, 41, 497-500.	1.2	7
38	A novel frameshift mutation in SOX10 causes Waardenburg syndrome with peripheral demyelinating neuropathy, visual impairment and the absence of Hirschsprung disease. American Journal of Medical Genetics, Part A, 2020, 182, 1278-1283.	1.2	7
39	Genetic background-dependent role of <i>Egr1</i> for eyelid development. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7131-E7139.	7.1	6
40	Survey of practice patterns for the management of ophthalmic genetic disorders among AAPOS members: report by the AAPOS Genetic Eye Disease Task Force. Journal of AAPOS, 2019, 23, 226-228.e1.	0.3	6
41	Anophthalmia including next-generation sequencing-based approaches. European Journal of Human Genetics, 2020, 28, 388-398.	2.8	6
42	The evolving role of genetics in ophthalmology. Ophthalmic Genetics, 2021, 42, 110-113.	1.2	5
43	Clinical utility gene card for oculocutaneous (OCA) and ocular albinism (OA)—an update. European Journal of Human Genetics, 2021, 29, 1577-1583.	2.8	4
44	In vivo assessment of neurodegeneration in Spinocerebellar Ataxia type 7. NeuroImage: Clinical, 2021, 29, 102561.	2.7	4
45	A Comprehensive Assessment of Co-occurring Birth Defects among Infants with Non-Syndromic Anophthalmia or Microphthalmia. Ophthalmic Epidemiology, 2021, 28, 428-435.	1.7	4
46	Identification of 4 novel human ocular coloboma genes ANK3, BMPR1B, PDGFRA, and CDH4 through evolutionary conserved vertebrate gene analysis. Genetics in Medicine, 2022, 24, 1073-1084.	2.4	4
47	<i>De novo</i> frameshift mutation in <i>YAP1</i> associated with bilateral uveal coloboma and microphthalmia. Ophthalmic Genetics, 2022, 43, 513-517.	1.2	4
48	<i>ABCA4</i> c.859-25A>G, a Frequent Palestinian Founder Mutation Affecting the Intron 7 Branchpoint, Is Associated With Early-Onset Stargardt Disease., 2022, 63, 20.		3
49	Clinical Phenotypes of CDHR1-Associated Retinal Dystrophies. Genes, 2022, 13, 925.	2.4	3
50	Novel ophthalmic findings and deep phenotyping in Williams-Beuren syndrome. British Journal of Ophthalmology, 2023, 107, 1554-1559.	3.9	3
51	Clinical diagnosis of presumed SOX2 gonadosomatic mosaicism. Ophthalmic Genetics, 2021, 42, 320-325.	1.2	2
52	Systematic analysis of physical examination characteristics of 94 individuals with Joubert syndrome: Keys to suspecting the diagnosis. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2022, , .	1.6	1
53	Review of evidence for environmental causes of uveal coloboma. Survey of Ophthalmology, 2021, , .	4.0	1
54	Response to Finsterer's "Exclude hereditary and acquired differential disorders before attributing retinoschisis to Kears-Sayre syndrome― Ophthalmic Genetics, 2021, 42, 100-100.	1.2	0

#	Article	IF	CITATIONS
55	Reply. Ophthalmology, 2021, 128, e214-e215.	5.2	O