Ranjan Sen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3313195/publications.pdf

Version: 2024-02-01

218381 197535 3,602 49 26 49 h-index citations g-index papers 77 77 77 5935 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Postmitotic G1 phase survivin drives mitogen-independent cell division of B lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115567119.	3.3	5
2	Ageâ€associated expression of p21and p53 during human wound healing. Aging Cell, 2021, 20, e13354.	3.0	15
3	DNA methylation signatures reveal that distinct combinations of transcription factors specify human immune cell epigenetic identity. Immunity, 2021, 54, 2465-2480.e5.	6.6	31
4	Neuroinflammation is associated with infiltration of T cells in Lewy body disease and $\hat{l}\pm$ -synuclein transgenic models. Journal of Neuroinflammation, 2020, 17, 214.	3.1	48
5	Altered 3D chromatin structure permits inversional recombination at the <i>IgH</i> locus. Science Advances, 2020, 6, eaaz8850.	4.7	13
6	The dynamic changes in cytokine responses in COVID-19: a snapshot of the current state of knowledge. Nature Immunology, 2020, 21, 1146-1151.	7.0	82
7	YY1 control of mitochondrialâ€related genes does not account for regulation of immunoglobulin class switch recombination in mice. European Journal of Immunology, 2020, 50, 822-838.	1.6	7
8	Immune Differentiation Regulator p100 Tunes NF-κB Responses to TNF. Frontiers in Immunology, 2019, 10, 997.	2.2	9
9	Age-associated changes in human CD4+ T cells point to mitochondrial dysfunction consequent to impaired autophagy. Aging, 2019, 11, 9234-9263.	1.4	63
10	Discovery proteomics in aging human skeletal muscle finds change in spliceosome, immunity, proteostasis and mitochondria. ELife, 2019, 8, .	2.8	132
11	Aging, inflammation and the environment. Experimental Gerontology, 2018, 105, 10-18.	1.2	267
12	Sequential Enhancer Sequestration Dysregulates Recombination Center Formation at the IgH Locus. Molecular Cell, 2018, 70, 21-33.e6.	4.5	35
13	Misregulation of the IgH Locus in Thymocytes. Frontiers in Immunology, 2018, 9, 2426.	2.2	3
14	Transcriptional outcomes and kinetic patterning of gene expression in response to NF-κB activation. PLoS Biology, 2018, 16, e2006347.	2.6	37
15	The RAG-2 Inhibitory Domain Gates Accessibility of the V(D)J Recombinase to Chromatin. Molecular and Cellular Biology, 2018, 38, .	1.1	9
16	IL-1R signaling promotes STAT3 and NF- \hat{l}^{9} B factor recruitment to distal cis-regulatory elements that regulate Il17a/f transcription. Journal of Biological Chemistry, 2018, 293, 15790-15800.	1.6	40
17	Access Guide to Antigen Receptor Genes. Journal of Immunology, 2017, 199, 3-4.	0.4	3
18	Human T cell immunosenescence and inflammation in aging. Journal of Leukocyte Biology, 2017, 102, 977-988.	1. 5	203

#	Article	IF	Citations
19	YY1 controls Eμ-3â€2RR DNA loop formation and immunoglobulin heavy chain class switch recombination. Blood Advances, 2016, 1, 15-20.	2.5	12
20	mTOR-Dependent and Independent Survival Signaling by PI3K in B Lymphocytes. PLoS ONE, 2016, 11, e0146955.	1.1	6
21	Evolving adaptive immunity. Genes and Development, 2016, 30, 873-875.	2.7	6
22	Extremely Long-Range Chromatin Loops Link Topological Domains to Facilitate a Diverse Antibody Repertoire. Cell Reports, 2016, 14, 896-906.	2.9	75
23	A Pioneer's Tail. Immunity, 2016, 44, 516-518.	6.6	0
24	Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers. Journal of Immunology, 2016, 196, 3385-3397.	0.4	27
25	Divergence of transcriptional landscape occurs early in B cell activation. Epigenetics and Chromatin, 2015, 8, 20.	1.8	28
26	Constraints Contributed by Chromatin Looping Limit Recombination Targeting during Ig Class Switch Recombination. Journal of Immunology, 2015, 194, 2380-2389.	0.4	24
27	Chromatin Interactions in the Control of Immunoglobulin Heavy Chain Gene Assembly. Advances in Immunology, 2015, 128, 41-92.	1.1	35
28	A structural hierarchy mediated by multiple nuclear factors establishes <i>IgH</i> locus conformation. Genes and Development, 2015, 29, 1683-1695.	2.7	40
29	Spt5 accumulation at variable genes distinguishes somatic hypermutation in germinal center B cells from ex vivo–activated cells. Journal of Experimental Medicine, 2014, 211, 2297-2306.	4.2	43
30	Age-associated changes in basal NF-l ^o B function in human CD4+ T lymphocytes via dysregulation of PI3 kinase. Aging, 2014, 6, 957-969.	1.4	44
31	Flexible ordering of antibody class switch and V(D)J joining during B-cell ontogeny. Genes and Development, 2013, 27, 2439-2444.	2.7	43
32	Architectural Protein Subclasses Shape 3D Organization of Genomes during Lineage Commitment. Cell, 2013, 153, 1281-1295.	13.5	1,050
33	Localized DNA Demethylation at Recombination Intermediates during Immunoglobulin Heavy Chain Gene Assembly. PLoS Biology, 2013, 11, e1001475.	2.6	24
34	Localized epigenetic changes induced by DH recombination restricts recombinase to DJH junctions. Nature Immunology, 2012, 13, 1205-1212.	7.0	42
35	Transcription, Splicing, and Release: Are We There Yet?. Cell, 2012, 150, 241-243.	13.5	4
36	The origins of NF-κB. Nature Immunology, 2011, 12, 686-688.	7.0	18

#	Article	IF	Citations
37	Two Forms of Loops Generate the Chromatin Conformation of the Immunoglobulin Heavy-Chain Gene Locus. Cell, 2011, 147, 332-343.	13.5	139
38	Memories of lost enhancers: Figure 1 Genes and Development, 2010, 24, 973-979.	2.7	19
39	Selectivity of the NF-ÂB Response. Cold Spring Harbor Perspectives in Biology, 2010, 2, a000257-a000257.	2.3	126
40	RAGs' eye view of the immunoglobulin heavy chain gene locus. Seminars in Immunology, 2010, 22, 337-345.	2.7	14
41	A 220-nucleotide deletion of the intronic enhancer reveals an epigenetic hierarchy in immunoglobulin heavy chain locus activation. Journal of Experimental Medicine, 2009, 206, 1019-1027.	4.2	54
42	A Plant Homeodomain in Rag-2 that Binds Hypermethylated Lysine 4 of Histone H3 Is Necessary for Efficient Antigen-Receptor-Gene Rearrangement. Immunity, 2007, 27, 561-571.	6.6	236
43	Repeat Organization and Epigenetic Regulation of the DH-Cν Domain of the Immunoglobulin Heavy-Chain Gene Locus. Molecular Cell, 2007, 27, 842-850.	4.5	77
44	Control of B Lymphocyte Apoptosis by the Transcription Factor NF-κB. Immunity, 2006, 25, 871-883.	6.6	93
45	Genetic and epigenetic regulation of IgH gene assembly. Current Opinion in Immunology, 2006, 18, 237-242.	2.4	32
46	NF-κB and the Immunoglobulin κ Gene Enhancer. Journal of Experimental Medicine, 2004, 200, 1099-1102.	4.2	11
47	Mechanisms for feedback inhibition of the immunoglobulin heavy chain locus. Current Opinion in Immunology, 2004, 16, 235-240.	2.4	17
48	Transient IL-7/IL-7R Signaling Provides a Mechanism for Feedback Inhibition of Immunoglobulin Heavy Chain Gene Rearrangements. Immunity, 2003, 18, 229-241.	6.6	118
49	Pax5 is required for recombination of transcribed, acetylated, 5' IgH V gene segments. Genes and Development, 2003, 17, 37-42.	2.7	141