Shigetaka Okano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3312569/publications.pdf Version: 2024-02-01

SHICETAKA OKANO

#	Article	IF	CITATIONS
1	Transient distortion behavior during TIG welding of thin steel plate. Journal of Materials Processing Technology, 2017, 241, 103-111.	6.3	23
2	Effect of Welding Process Conditions on Angular Distortion Induced by Bead-on-plate Welding. ISIJ International, 2018, 58, 153-158.	1.4	15
3	Experimental and numerical investigation on generation characteristics of welding deformation in compressor impeller. Materials and Design, 2016, 101, 160-169.	7.0	14
4	An attempt to enhance NUMERICAL MODELS OF ANGULAR DISTORTION by considering the physics of the welding arc. Welding in the World, Le Soudage Dans Le Monde, 2011, 55, 93-100.	2.5	12
5	Investigation of Standardizing for Evaluation Method of Transverse Varestraint Test. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2019, 37, 200-207.	0.5	11
6	Experimental and Numerical Investigation of Trailing Heat Sink Effect on Weld Residual Stress and Distortion of Austenitic Stainless Steel. ISIJ International, 2016, 56, 647-653.	1.4	9
7	Quantitative evaluation of augmented strain at the weld metal during the Trans-Varestraint test. Welding in the World, Le Soudage Dans Le Monde, 2021, 65, 2013-2021.	2.5	9
8	Experimental Study on Relationship between Heat Input Parameter and Angular Distortion. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2010, 28, 97-107.	0.5	8
9	Method of X-ray residual stress measurement for phase transformed welds. Welding in the World, Le Soudage Dans Le Monde, 2015, 59, 577-583.	2.5	8
10	Application of Gas Metal Arc Welding Process Model to Computational Welding Mechanics. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2014, 32, 276-283.	0.5	7
11	Effect of Welding Conditions on Reduction of Angular Distortion by In-Process Control Welding using Back Heating Source. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2009, 27, 231s-234s.	0.5	6
12	Evaluation of the effect of strength mismatch in undermatched joints on the static tensile strength of welded joints by considering microstructure. Welding International, 2014, 28, 766-774.	0.7	6
13	Experimental study on relationship between heat parameter and angular distortion. Welding International, 2014, 28, 289-300.	0.7	5
14	Engineering Model of Metal Active Gas Welding Process for Efficient Distortion Analysis. ISIJ International, 2017, 57, 511-516.	1.4	5
15	Numerical Model of Multi-pass Repair Process by Temper Bead Welding. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2013, 31, 143s-147s.	0.5	4
16	Coupling Computation between Weld Mechanics and Arc Plasma Process for Residual Stress Analysis. Materials Performance and Characterization, 2018, 7, 559-573.	0.3	4
17	Comparative Study on Internal Residual Stresses in Electron Beam Welds. ISIJ International, 2017, 57, 1072-1079.	1.4	3
18	Parameter Optimization of Thermal Shrinkage Technique for Simple Numerical Simulation of Welding Angular Distortion. ISIJ International, 2021, 61, 2143-2149.	1.4	3

Shigetaka Okano

#	Article	IF	CITATIONS
19	Investigation of standardizing for evaluation method of transverse-Varestraint test. Welding International, 2019, 33, 189-199.	0.7	3
20	A New Welding Process Simulation Using a Hybrid Particle and Grid Method with Explicit MPS. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2013, 31, 40s-43s.	0.5	3
21	In-Situ Measurement of Transitional Stress in Welds Metal of Steel Using Synchrotron Radiation. Zairyo/Journal of the Society of Materials Science, Japan, 2016, 65, 665-671.	0.2	3
22	A discussion of the relationship between heat input parameter and angular distortion by considering moving heat source effect. Welding International, 2014, 28, 683-692.	0.7	2
23	Numerical Analysis of Residual Stress Distribution Generated by Welding After Surface Machining Based on Hardness Variation in Surface Machined Layer due to Welding Thermal Cycle. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2014, 32, 267-275.	0.5	1
24	Weld residual distortion produced due to locally cooled temperature distribution and its reduction effect. Welding International, 2014, 28, 281-288.	0.7	1
25	Thermal conduction theoretical analysis of temperature distribution during multiple-electrode submerged arc welding. Welding International, 2014, 28, 174-183.	0.7	1
26	A Discussion about Opening and Closing Behavior of Root Gap during Butt Welding and Its Affectors. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2016, 34, 26-34.	0.5	1
27	Applicability Evaluation of X-ray Stress Measurement at Weld Metal of Austenitic Stainless Steel based on Dependence of Crystal Grain Coarsening on Welding Conditions. Zairyo/Journal of the Society of Materials Science, Japan, 2019, 68, 318-324.	0.2	1
28	Report of the APCFS/SIF-2014. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2015, 84, 274-275.	0.1	1
29	Semi-destructive Method for Evaluation of Local Mechanical Properties in the Notch-Tip Region using an Indentation Technique. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2013, 31, 114s-118s.	0.5	1
30	An assessment of welding distortion analysis using thermal shrinkage technique for a construction machinery structure. Transactions of the JSME (in Japanese), 2022, 88, 21-00301-21-00301.	0.2	1
31	Measurement of Internal Residual Stress in Components by Counter Method. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2022, 91, 99-103.	0.1	1
32	Influence of Thickness of Flange Plate on the Reduction of Angular Distortion by Welding with Trailing Reverse-side Flame Line Heating. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2016, 34, 1-7.	0.5	0
33	Study on prevention of angular distortion in fillet-welded T-joint by welding with a trailing reverse-side gas heating. Welding International, 2016, 30, 826-834.	0.7	0
34	Numerical analysis of residual stress distribution generated by welding after surface machining based on hardness variation in surface machined layer due to welding thermal cycle. Welding International, 2017, 31, 111-121.	0.7	0
35	Effect of Process Variable on Temperature Distribution in the Heat-Affected Zone of Temper Bead Welds. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2017, 35, 13s-17s.	0.5	0
36	Accuracy Validation of Measurement of Transient Thermal Stress at Steel Welds by Synchrotron X-ray Diffraction Techniques. Zairyo/Journal of the Society of Materials Science, Japan, 2019, 68, 325-331.	0.2	0

#	Article	IF	CITATIONS
37	ICONE19-43349 Integrated Simulation Model for GMA Welding by Coupling Arc Plasma and Bead Formation with Thermal Distortion. The Proceedings of the International Conference on Nuclear Engineering (ICONE), 2011, 2011.19, _ICONE1943ICONE1943.	0.0	0
38	ICONE23-1890 CALCULATING STRESS IN TEXTURE UNDER MULTI-AXIS STRESS STATE FOR X-RAY STRESS MEASUREMENT ON WELDS. The Proceedings of the International Conference on Nuclear Engineering (ICONE), 2015, 2015.23, _ICONE23-1ICONE23-1.	0.0	0
39	The Measurement Method of Internal Residual Stress Distribution Concerned with Fatigue Crack Growth. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2016, 85, 216-220.	0.1	0
40	Deep Hole Drilling Technique (DHD). Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2019, 88, 485-488.	0.1	0
41	Measurement of Residual Stress at Welds by Instrumented Indentation Techniques. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2019, 88, 480-484.	0.1	0
42	Technical Commission on Welded Structure. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2020, 89, 358-365.	0.1	0
43	Residual Stress Analysis of Dissimilar Weld Joint between CastIron Pipe and Steel Flange. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2020, 38, 144s-148s.	0.5	0
44	Diagnosis of Mechanical Properties with Instrumented Indentation Technique Using Multiple Pyramid Indenters. Materials Performance and Characterization, 2021, 10, 769-781.	0.3	0
45	Application of MIRS Method for Residual Stress Evaluation of WAAM. The Proceedings of the Materials and Mechanics Conference, 2021, 2021, OS1608.	0.0	0
46	Effect of welding conditions on stress–strain curves at welds through ball indentation techniques. The Proceedings of the Materials and Mechanics Conference, 2021, 2021, OS1611.	0.0	0