

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3311373/publications.pdf Version: 2024-02-01

ς αυλά ταν

#	Article	IF	CITATIONS
1	Ultra-Sensitive Quantification of Protein and mRNA in Single Mammalian Cells with Digital PLA. Methods in Molecular Biology, 2022, 2386, 157-169.	0.9	1
2	Cannabidiol inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses. Science Advances, 2022, 8, .	10.3	77
3	Cannabidiol inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses Science Advances, 2022, , eabi6110.	10.3	11
4	NF-lºB responds to absolute differences in cytokine concentrations. Science Signaling, 2021, 14, .	3.6	34
5	Discovery of SARS-CoV-2 main protease inhibitors using a synthesis-directed <i>de novo</i> design model. Chemical Communications, 2021, 57, 5909-5912.	4.1	30
6	Sensitive detection and quantification of SARS-CoV-2 in saliva. Scientific Reports, 2021, 11, 12425.	3.3	24
7	COVIDomic: A multi-modal cloud-based platform for identification of risk factors associated with COVID-19 severity. PLoS Computational Biology, 2021, 17, e1009183.	3.2	7
8	Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. Science, 2021, 373, 931-936.	12.6	173
9	Single-Cell Proteomics. Trends in Biochemical Sciences, 2021, 46, 661-672.	7.5	96
10	High-throughput RNA sequencing of paraformaldehyde-fixed single cells. Nature Communications, 2021, 12, 5636.	12.8	29
11	Computer vision reveals hidden variables underlying NF-κB activation in single cells. Science Advances, 2021, 7, eabg4135.	10.3	10
12	Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids. Nature Communications, 2020, 11, 5271.	12.8	195
13	Ultrasensitive digital quantification of cytokines and bacteria predicts septic shock outcomes. Nature Communications, 2020, 11, 2607.	12.8	25
14	Droplet-based high-throughput cultivation for accurate screening of antibiotic resistant gut microbes. ELife, 2020, 9, .	6.0	73
15	Ultra-sensitive digital quantification of proteins and mRNA in single cells. Nature Communications, 2019, 10, 3544.	12.8	44
16	Ultra-multiplexed analysis of single-cell dynamics reveals logic rules in differentiation. Science Advances, 2019, 5, eaav7959.	10.3	40
17	HSV-1 single-cell analysis reveals the activation of anti-viral and developmental programs in distinct sub-populations. ELife, 2019, 8, .	6.0	112
18	Viable cell culture in PDMS-based microfluidic devices. Methods in Cell Biology, 2018, 148, 3-33.	1.1	29

SavaÅΫ Ταγ

#	Article	IF	CITATIONS
19	Automated Microfluidic System for Dynamic Stimulation and Tracking of Single Cells. Analytical Chemistry, 2018, 90, 10695-10700.	6.5	29
20	Universal signal generator for dynamic cell stimulation. Lab on A Chip, 2017, 17, 2218-2224.	6.0	15
21	Cellular Decision Making by Non-Integrative Processing of TLR Inputs. Cell Reports, 2017, 19, 125-135.	6.4	45
22	Integrated platform for cell culture and dynamic quantification of cell secretion. Lab on A Chip, 2017, 17, 4124-4133.	6.0	29
23	A microfluidic device for measuring cell migration towards substrate-bound and soluble chemokine gradients. Scientific Reports, 2016, 6, 36440.	3.3	69
24	Noise Induces Hopping between NF-κB Entrainment Modes. Cell Systems, 2016, 3, 532-539.e3.	6.2	44
25	High-Content Quantification of Single-Cell Immune Dynamics. Cell Reports, 2016, 15, 411-422.	6.4	117
26	The Immune-Metabolic Basis of Effector Memory CD4+ T Cell Function under Hypoxic Conditions. Journal of Immunology, 2016, 196, 106-114.	0.8	72
27	Digital Quantification of Proteins and mRNA in Single Mammalian Cells. Molecular Cell, 2016, 61, 914-924.	9.7	154
28	Toward high-throughput biomechanical phenotyping of single molecules. Nature Methods, 2015, 12, 45-46.	19.0	9
29	Noise Facilitates Transcriptional Control under Dynamic Inputs. Cell, 2015, 160, 381-392.	28.9	201
30	Automated co-culture system for spatiotemporal analysis of cell-to-cell communication. Lab on A Chip, 2015, 15, 2192-2200.	6.0	29
31	Single-Cell Analysis: The Differences That Kill. Cell, 2015, 162, 1208-1210.	28.9	3
32	Real-time tracking, retrieval and gene expression analysis of migrating human T cells. Lab on A Chip, 2015, 15, 1276-1283.	6.0	31
33	Digital signaling decouples activation probability and population heterogeneity. ELife, 2015, 4, e08931.	6.0	60
34	Microfluidic cell culture. Current Opinion in Biotechnology, 2014, 25, 95-102.	6.6	315
35	Microfluidic single-cell analysis for systems immunology. Lab on A Chip, 2014, 14, 1246.	6.0	82
36	Editorial overview: Analytical biotechnology: New technologies for quantitative analysis of biological specimens and natural products. Current Opinion in Biotechnology, 2014, 25, iv-vi.	6.6	3

SavaÅΫ Ταγ

#	Article	IF	CITATIONS
37	High-throughput microfluidic single-cell analysis pipeline for studies of signaling dynamics. Nature Protocols, 2014, 9, 1713-1726.	12.0	110
38	Migration of cells in a social context. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 129-134.	7.1	97
39	Flow-switching allows independently programmable, extremely stable, high-throughput diffusion-based gradients. Lab on A Chip, 2013, 13, 1273.	6.0	54
40	Spontaneous NF-κB Activation by Autocrine TNFα Signaling: A Computational Analysis. PLoS ONE, 2013, 8, e78887.	2.5	57
41	Single-cell NF-κB dynamics reveal digital activation and analogue information processing. Nature, 2010, 466, 267-271.	27.8	736
42	An updatable holographic three-dimensional display. Nature, 2008, 451, 694-698.	27.8	400
43	An Updatable Holographic Display for 3D Visualization. Journal of Display Technology, 2008, 4, 424-430.	1.2	45
44	Photorefractive polymer composite operating at the optical communication wavelength of 1550 nm. Applied Physics Letters, 2004, 85, 4561-4563.	3.3	43