
Anjali P Kusumbe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3310855/publications.pdf Version: 2024-02-01

ANIALI D KLISHMRE

#	Article	IF	CITATIONS
1	Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature, 2014, 507, 323-328.	27.8	1,417
2	Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature, 2014, 507, 376-380.	27.8	733
3	Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature, 2016, 532, 323-328.	27.8	553
4	Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature, 2016, 532, 380-384.	27.8	355
5	Blood flow controls bone vascular function and osteogenesis. Nature Communications, 2016, 7, 13601.	12.8	261
6	Inhibition of Endosteal Vascular Niche Remodeling Rescues Hematopoietic Stem Cell Loss in AML. Cell Stem Cell, 2018, 22, 64-77.e6.	11.1	249
7	Cell–matrix signals specify bone endothelial cells during developmental osteogenesis. Nature Cell Biology, 2017, 19, 189-201.	10.3	161
8	Regulation of tissue morphogenesis by endothelial cell-derived signals. Trends in Cell Biology, 2015, 25, 148-157.	7.9	142
9	Endothelial proteolytic activity and interaction with non-resorbing osteoclasts mediate bone elongation. Nature Cell Biology, 2019, 21, 430-441.	10.3	124
10	Sample preparation for high-resolution 3D confocal imaging of mouse skeletal tissue. Nature Protocols, 2015, 10, 1904-1914.	12.0	120
11	Regulation of Hematopoiesis and Osteogenesis by Blood Vessel–Derived Signals. Annual Review of Cell and Developmental Biology, 2016, 32, 649-675.	9.4	115
12	Bone Vasculature and Bone Marrow Vascular Niches in Health and Disease. Journal of Bone and Mineral Research, 2020, 35, 2103-2120.	2.8	80
13	High-resolution 3D imaging uncovers organ-specific vascular control of tissue aging. Science Advances, 2021, 7, .	10.3	59
14	Angiocrine signals regulate quiescence and therapy resistance in bone metastasis. JCI Insight, 2019, 4, .	5.0	57
15	Role of angiocrine signals in bone development, homeostasis and disease. Open Biology, 2019, 9, 190144.	3.6	48
16	Osteoclast progenitors promote bone vascularization and osteogenesis. Nature Medicine, 2014, 20, 1238-1240.	30.7	42
17	Fundamentals of bone vasculature: Specialization, interactions and functions. Seminars in Cell and Developmental Biology, 2022, 123, 36-47.	5.0	39
18	Decreased blood vessel density and endothelial cell subset dynamics during ageing of the endocrine system. EMBO Journal, 2021, 40, e105242.	7.8	36

Anjali P Kusumbe

#	Article	IF	CITATIONS
19	Vascular niches for disseminated tumour cells in bone. Journal of Bone Oncology, 2016, 5, 112-116.	2.4	34
20	Bone Angiogenesis and Vascular Niche Remodeling in Stress, Aging, and Diseases. Frontiers in Cell and Developmental Biology, 2020, 8, 602269.	3.7	31
21	Mechanical forces couple bone matrix mineralization with inhibition of angiogenesis to limit adolescent bone growth. Nature Communications, 2022, 13, .	12.8	15
22	Heterogeneity and Dynamics of Vasculature in the Endocrine System During Aging and Disease. Frontiers in Physiology, 2021, 12, 624928.	2.8	9
23	Confocal/two-photon microscopy in studying colonisation of cancer cells in bone using xenograft mouse models. BoneKEy Reports, 2016, 5, 851.	2.7	8
24	Diversity of Vascular Niches in Bones and Joints During Homeostasis, Ageing, and Diseases. Frontiers in Immunology, 2021, 12, 798211.	4.8	7
25	The role of vasculature in cancer stem cell niches. Advances in Stem Cells and Their Niches, 2021, , 63-84.	0.1	0
26	EPCR Guides Hematopoietic Stem Cells Homing to the Bone Marrow Independently of Niche Clearance. Blood, 2016, 128, 4538-4538.	1.4	0