Zhilong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3310306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diversifying of Chemical Structure of Native Monascus Pigments. Frontiers in Microbiology, 2018, 9, 3143.	1.5	43
2	Ultra-fast and accurate binding energy prediction of shuttle effect-suppressive sulfur hosts for lithium-sulfur batteries using machine learning. Energy Storage Materials, 2021, 35, 88-98.	9.5	42
3	One-step and DNA amplification-free detection of Listeria monocytogenes in ham samples: Combining magnetic relaxation switching and DNA hybridization reaction. Food Chemistry, 2021, 338, 127837.	4.2	38
4	Accelerated discovery of stable spinels in energy systems via machine learning. Nano Energy, 2021, 81, 105665.	8.2	30
5	Combining the Fragmentation Approach and Neural Network Potential Energy Surfaces of Fragments for Accurate Calculation of Protein Energy. Journal of Physical Chemistry B, 2020, 124, 3027-3035.	1.2	27
6	Gd3+-nanoparticle-enhanced multivalent biosensing that combines magnetic relaxation switching and magnetic separation. Biosensors and Bioelectronics, 2020, 155, 112106.	5.3	25
7	Potential inhibitors for the novel coronavirus (SARS-CoV-2). Briefings in Bioinformatics, 2021, 22, 1225-1231.	3.2	23
8	Deep learning for ultra-fast and high precision screening of energy materials. Energy Storage Materials, 2021, 39, 45-53.	9.5	23
9	A metal organic foam-derived zinc cobalt sulfide with improved binding energies towards polysulfides for lithium–sulfur batteries. Ceramics International, 2020, 46, 14056-14063.	2.3	22
10	Predicting adsorption ability of adsorbents at arbitrary sites for pollutants using deep transfer learning. Npj Computational Materials, 2021, 7, .	3.5	22
11	Biosynthesis of Monascus pigments by resting cell submerged culture in nonionic surfactant micelle aqueous solution. Applied Microbiology and Biotechnology, 2016, 100, 7083-7089.	1.7	21
12	Machine-Learning-Enabled Tricks of the Trade for Rapid Host Material Discovery in Li–S Battery. ACS Applied Materials & Interfaces, 2021, 13, 53388-53397.	4.0	21
13	Machine learning accelerates quantum mechanics predictions of molecular crystals. Physics Reports, 2021, 934, 1-71.	10.3	21
14	Binding affinity and mechanisms of SARS-CoV-2 variants. Computational and Structural Biotechnology Journal, 2021, 19, 4184-4191.	1.9	20
15	Deep Learning Accelerates the Discovery of Twoâ€Dimensional Catalysts for Hydrogen Evolution Reaction. Energy and Environmental Materials, 2023, 6, .	7.3	20
16	Binder-free S@Ti3C2Tx sandwich structure film as a high-capacity cathode for a stable aluminum-sulfur battery. Science China Materials, 2022, 65, 1463-1475.	3.5	20
17	Interfacial biocatalysis in bacteria-stabilized Pickering emulsions for microbial transformation of hydrophobic chemicals. Catalysis Science and Technology, 2021, 11, 2816-2826.	2.1	18
18	A Machine Learning Shortcut for Screening the Spinel Structures of Mg/Zn Ion Battery Cathodes with a High Conductivity and Rapid Ion Kinetics. Energy Storage Materials, 2021, 42, 277-285.	9.5	18

ZHILONG WANG

#	Article	IF	CITATIONS
19	Harnessing artificial intelligence to holistic design and identification for solid electrolytes. Nano Energy, 2021, 89, 106337.	8.2	16
20	An Ensemble Learning Platform for the Large-Scale Exploration of New Double Perovskites. ACS Applied Materials & Interfaces, 2022, 14, 717-725.	4.0	16
21	Engineering early prediction of supercapacitors' cycle life using neural networks. Materials Today Energy, 2020, 18, 100537.	2.5	14
22	Production of Monascus pigments as extracellular crystals by cell suspension culture. Applied Microbiology and Biotechnology, 2018, 102, 677-687.	1.7	13
23	Unsupervised discovery of thin-film photovoltaic materials from unlabeled data. Npj Computational Materials, 2021, 7, .	3.5	13
24	Vision for energy material design: A roadmap for integrated data-driven modeling. Journal of Energy Chemistry, 2022, 71, 56-62.	7.1	12
25	Demulsification of Bacteria-Stabilized Pickering Emulsions Using Modified Silica Nanoparticles. ACS Applied Materials & Interfaces, 2022, 14, 24102-24112.	4.0	12
26	Unraveling the Anchoring Effect of MXene-Supported Single Atoms as Cathodes for Aluminum–Sulfur Batteries. , 2022, 4, 1436-1445.		11
27	Extraction of anionic dyes with ionic liquid–nonionic surfactant aqueous two-phase system. Separation Science and Technology, 2017, 52, 804-811.	1.3	10
28	Neural Networks Accelerate the <i>Ab Initio</i> Prediction of Solid–Solid Phase Transitions at High Pressures. Journal of Physical Chemistry Letters, 2021, 12, 132-137.	2.1	10
29	Crystal substrate inhibition during microbial transformation of phytosterols in Pickering emulsions. Applied Microbiology and Biotechnology, 2022, 106, 2403-2414.	1.7	10
30	DeepTMC: A deep learning platform to targeted design doped transition metal compounds. Energy Storage Materials, 2022, 45, 1201-1211.	9.5	9
31	Efficient production of red Monascus pigments with single non-natural amine residue by in situ chemical modification. World Journal of Microbiology and Biotechnology, 2019, 35, 13.	1.7	8
32	Highly Efficient Production of Tailored <i>Monascus</i> Pigments by Using a Biocompatible Chemical Reaction Interfacing with Microbial Metabolism. ACS Sustainable Chemistry and Engineering, 2021, 9, 3347-3356.	3.2	8
33	Machine learning builds full-QM precision protein force fields in seconds. Briefings in Bioinformatics, 2021, 22, .	3.2	8
34	Releasing intracellular product to prepare whole cell biocatalyst for biosynthesis of Monascus pigments in water–edible oil two-phase system. Bioprocess and Biosystems Engineering, 2016, 39, 1785-1791.	1.7	7
35	Merging of a chemical reaction with microbial metabolism <i>via</i> inverse phase transfer catalysis for efficient production of red <i>Monascus</i> pigments. Reaction Chemistry and Engineering, 2019, 4, 1447-1458.	1.9	7
36	Accelerated Mining of 2D Van der Waals Heterojunctions by Integrating Supervised and Unsupervised Learning. Chemistry of Materials, 2022, 34, 5571-5583.	3.2	7

ZHILONG WANG

#	Article	IF	CITATIONS
37	Interfacing a phosphate catalytic reaction with a microbial metabolism for the production of azaphilone alkaloids. Reaction Chemistry and Engineering, 2020, 5, 2048-2052.	1.9	6
38	Azaphilone alkaloids: prospective source of natural food pigments. Applied Microbiology and Biotechnology, 2022, 106, 469-484.	1.7	6
39	An inductive transfer learning force field (ITLFF) protocol builds protein force fields in seconds. Briefings in Bioinformatics, 2022, 23, .	3.2	5
40	Computational screening of spinel structure cathodes for Li-ion battery with low expansion and rapid ion kinetics. Computational Materials Science, 2022, 204, 111187.	1.4	5
41	Click Chemistry-Mediated Particle Counting Sensing via Cu(II)-Polyglutamic Acid Coordination Chemistry and Enzymatic Reaction. Analytical Chemistry, 2022, 94, 5293-5300.	3.2	5
42	Biocatalytic activity of Monascus mycelia depending on physiology and high sensitivity to product concentration. AMB Express, 2017, 7, 88.	1.4	2
43	Unsupervised Assisted Directional Design of Chemical Reactions. Cell Reports Physical Science, 2020, 1, 100269.	2.8	2