Ismael Mingarro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3310187/publications.pdf

Version: 2024-02-01

93 2,839 31 48
papers citations h-index g-index

98 98 98 2930 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Interfacial activation-based molecular bioimprinting of lipolytic enzymes Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 3308-3312.	7.1	139
2	Activation of the p75 Neurotrophin Receptor through Conformational Rearrangement of Disulphide-Linked Receptor Dimers. Neuron, 2009, 62, 72-83.	8.1	134
3	Membrane-Insertion Fragments of Bcl-xL, Bax, and Bidâ€. Biochemistry, 2004, 43, 10930-10943.	2.5	121
4	Peptides corresponding to helices 5 and 6 of Bax can independently form large lipid pores. FEBS Journal, 2006, 273, 971-981.	4.7	97
5	Peptides Derived from Apoptotic Bax and Bid Reproduce the Poration Activity of the Parent Full-Length Proteins. Biophysical Journal, 2005, 88, 3976-3990.	0.5	91
6	The ER-Membrane Transport System Is Critical for Intercellular Trafficking of the NSm Movement Protein and Tomato Spotted Wilt Tospovirus. PLoS Pathogens, 2016, 12, e1005443.	4.7	87
7	Different conformations of nascent polypeptides during translocation across the ER membrane. BMC Cell Biology, 2000, 1, 3.	3.0	79
8	The Tobacco mosaic virus Movement Protein Associates with but Does Not Integrate into Biological Membranes. Journal of Virology, 2014, 88, 3016-3026.	3.4	76
9	Bax transmembrane domain interacts with prosurvival Bcl-2 proteins in biological membranes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 310-315.	7.1	75
10	Small molecule inhibitors of Apaf-1-related caspase- 3/-9 activation that control mitochondrial-dependent apoptosis. Cell Death and Differentiation, 2006, 13, 1523-1532.	11.2	72
11	Alaâ€insertion scanning mutagenesis of the glycophorin a transmembrane helix: A rapid way to map helixâ€helix interactions in integral membrane proteins. Protein Science, 1996, 5, 1339-1341.	7.6	71
12	Structure-based statistical analysis of transmembrane helices. European Biophysics Journal, 2013, 42, 199-207.	2.2	65
13	Influence of Proline Residues in Transmembrane Helix Packing. Journal of Molecular Biology, 2004, 335, 631-640.	4.2	59
14	<i>N</i> â€glycosylation efficiency is determined by the distance to the Câ€terminus and the amino acid preceding an Asnâ€Serâ€Thr sequon. Protein Science, 2011, 20, 179-186.	7.6	57
15	SARS-CoV-2 envelope protein topology in eukaryotic membranes. Open Biology, 2020, 10, 200209.	3.6	56
16	Synthetic Pulmonary Surfactant Preparations: New Developments and Future Trends. Current Medicinal Chemistry, 2008, 15, 393-403.	2.4	55
17	Insertion and Topology of a Plant Viral Movement Protein in the Endoplasmic Reticulum Membrane. Journal of Biological Chemistry, 2002, 277, 23447-23452.	3.4	53
18	Plant Virus Cell-to-Cell Movement Is Not Dependent on the Transmembrane Disposition of Its Movement Protein. Journal of Virology, 2009, 83, 5535-5543.	3.4	49

#	Article	IF	Citations
19	The genome sequencing of an albino Western lowland gorilla reveals inbreeding in the wild. BMC Genomics, 2013, 14, 363.	2.8	48
20	Membrane Integration of Poliovirus 2B Viroporin. Journal of Virology, 2011, 85, 11315-11324.	3.4	43
21	Trapping of Different Lipase Conformers in Water-Restricted Environments. Biochemistry, 1996, 35, 9935-9944.	2.5	42
22	Helix-helix packing in a membrane-like environment. Journal of Molecular Biology, 1997, 272, 633-641.	4.2	40
23	Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement. Virology, 2005, 339, 31-41.	2.4	40
24	Double-spanning Plant Viral Movement Protein Integration into the Endoplasmic Reticulum Membrane Is Signal Recognition Particle-dependent, Translocon-mediated, and Concerted. Journal of Biological Chemistry, 2005, 280, 25907-25912.	3.4	40
25	Exploring the Human-Nipah Virus Protein-Protein Interactome. Journal of Virology, 2017, 91, .	3.4	38
26	Sec $61\hat{l}\pm$ and TRAM are Sequentially Adjacent to a Nascent Viral Membrane Protein during its ER Integration. Journal of Molecular Biology, 2007, 366, 366-374.	4.2	37
27	The role of hydrophobic matching on transmembrane helix packing in cells. Cell Stress, 2017, 1, 90-106.	3.2	37
28	RNA-binding properties and membrane insertion of Melon necrotic spot virus (MNSV) double gene block movement proteins. Virology, 2006, 356, 57-67.	2.4	36
29	Palmitoylation of Pulmonary Surfactant Protein SP-C Is Critical for Its Functional Cooperation with SP-B to Sustain Compression/Expansion Dynamics in Cholesterol-Containing Surfactant Films. Biophysical Journal, 2010, 99, 3234-3243.	0.5	36
30	Transmembrane but not soluble helices fold inside the ribosome tunnel. Nature Communications, 2018, 9, 5246.	12.8	36
31	Distant Downstream Sequence Determinants Can Control N-tail Translocation during Protein Insertion into the Endoplasmic Reticulum Membrane. Journal of Biological Chemistry, 2000, 275, 6207-6213.	3.4	35
32	Roles of a conserved proline in the internal fusion peptide of Ebola glycoprotein. FEBS Letters, 2004, 569, 261-266.	2.8	34
33	Membrane insertion and topology of the p7B movement protein of Melon Necrotic Spot Virus (MNSV). Virology, 2007, 367, 348-357.	2.4	34
34	Influence of hydrophobic matching on association of model transmembrane fragments containing a minimised glycophorin A dimerisation motif. FEBS Letters, 2005, 579, 1633-1638.	2.8	33
35	Membrane protein integration into the endoplasmic reticulum. FEBS Journal, 2011, 278, 3846-3858.	4.7	32
36	Activation of bee venom phospholipase A2through a peptide-enzyme complex. FEBS Letters, 1995, 372, 131-134.	2.8	31

3

#	Article	IF	Citations
37	Influence of the Câ€terminus of the glycophorin A transmembrane fragment on the dimerization process. Protein Science, 2000, 9, 1246-1253.	7.6	31
38	Membrane Insertion and Topology of the Translocating Chain-Associating Membrane Protein (TRAM). Journal of Molecular Biology, 2011, 406, 571-582.	4.2	31
39	Charge Pair Interactions in Transmembrane Helices and Turn Propensity of the Connecting Sequence Promote Helical Hairpin Insertion. Journal of Molecular Biology, 2013, 425, 830-840.	4.2	30
40	The Surfactant Peptide KL4 Sequence Is Inserted with a Transmembrane Orientation into the Endoplasmic Reticulum Membrane. Biophysical Journal, 2008, 95, L36-L38.	0.5	29
41	Membrane Insertion and Biogenesis of the <i>Turnip Crinkle Virus</i> p9 Movement Protein. Journal of Virology, 2010, 84, 5520-5527.	3.4	28
42	Identification from a Positional Scanning Peptoid Library of in Vivo Active Compounds That Neutralize Bacterial Endotoxins. Journal of Medicinal Chemistry, 2005, 48, 1265-1268.	6.4	26
43	Human Peroxin <scp>PEX3</scp> Is Coâ€translationally Integrated into the <scp>ER</scp> and Exits the <scp>ER</scp> inÂBudding Vesicles. Traffic, 2016, 17, 117-130.	2.7	26
44	Production and characterisation of recombinant forms of human pulmonary surfactant protein C (SP-C): Structure and surface activity. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 509-518.	2.6	24
45	Polar/Ionizable Residues in Transmembrane Segments: Effects on Helix-Helix Packing. PLoS ONE, 2012, 7, e44263.	2.5	24
46	Characterization of Acylating and Deacylating Activities of an Extracellular Phospholipase A2 in a Water-Restricted Environment. Biochemistry, 1994, 33, 4652-4660.	2.5	23
47	Calcium-dependent conformational changes of membrane-bound Ebola fusion peptide drive vesicle fusion. FEBS Letters, 2003, 535, 23-28.	2.8	21
48	BB0172, a Borrelia burgdorferi Outer Membrane Protein That Binds Integrin \hat{l}_{\pm} ₃ \hat{l}^2 ₁ . Journal of Bacteriology, 2013, 195, 3320-3330.	2.2	21
49	The Structural Plasticity of the C Terminus of p21Cip1 is a Determinant for Target Protein Recognition. ChemBioChem, 2003, 4, 863-869.	2.6	19
50	Interfacial Behavior of Recombinant Forms of Human Pulmonary Surfactant Protein SP-C. Langmuir, 2012, 28, 7811-7825.	3.5	19
51	Mcl-1 and Bok transmembrane domains: Unexpected players in the modulation of apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27980-27988.	7.1	19
52	Transient Structural Ordering of the RNA-Binding Domain of Carnation Mottle Virus p7 Movement Protein Modulates Nucleic Acid Binding. ChemBioChem, 2005, 6, 1391-1396.	2.6	18
53	Biological insertion of computationally designed short transmembrane segments. Scientific Reports, 2016, 6, 23397.	3.3	18
54	Membrane insertion and topology of the translocon-associated protein (TRAP) gamma subunit. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 903-909.	2.6	18

#	Article	IF	Citations
55	Ionic self-complementarity induces amyloid-like fibril formation in an isolated domain of a plant copper metallochaperone protein. BMC Structural Biology, 2004, 4, 7.	2.3	17
56	Peptides Derived from the Transmembrane Domain of Bcl-2 Proteins as Potential Mitochondrial Priming Tools. ACS Chemical Biology, 2014, 9, 1799-1811.	3.4	17
57	Membrane-protein engineering. Trends in Biotechnology, 1997, 15, 432-437.	9.3	16
58	Viral Membrane Protein Topology Is Dictated by Multiple Determinants in Its Sequence. Journal of Molecular Biology, 2009, 387, 113-128.	4.2	16
59	Viroporins, Examples of the Two-Stage Membrane Protein Folding Model. Viruses, 2015, 7, 3462-3482.	3.3	16
60	Proteomic composition of Nipah virus-like particles. Journal of Proteomics, 2018, 172, 190-200.	2.4	16
61	Viral Bcl2s' transmembrane domain interact with host Bcl2 proteins to control cellular apoptosis. Nature Communications, 2020, 11, 6056.	12.8	16
62	Cetylpyridinium chloride promotes disaggregation of SARS-CoV-2 virus-like particles. Journal of Oral Microbiology, 2022, 14, 2030094.	2.7	16
63	Consensus structural models for the amino terminal domain of the retrovirus restriction gene Fv1 and the murine leukaemia virus capsid proteins. , 2004, 4, 1.		15
64	The C-terminal Domains of Apoptotic BH3-only Proteins Mediate Their Insertion into Distinct Biological Membranes. Journal of Biological Chemistry, 2016, 291, 25207-25216.	3.4	14
65	The SARS-CoV-2 envelope (E) protein has evolved towards membrane topology robustness. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183608.	2.6	14
66	Hexapeptides that interfere with HIV-1 fusion peptide activity in liposomes block GP41-mediated membrane fusion. FEBS Letters, 2006, 580, 2561-2566.	2.8	13
67	Membrane topology of gp41 and amyloid precursor protein: Interfering transmembrane interactions as potential targets for HIV and Alzheimer treatment. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2132-2141.	2.6	11
68	Peptides in apoptosis research. Journal of Peptide Science, 2002, 8, 543-560.	1.4	10
69	A Bimolecular Multicellular Complementation System for the Detection of Syncytium Formation: A New Methodology for the Identification of Nipah Virus Entry Inhibitors. Viruses, 2019, 11, 229.	3.3	10
70	Conformational Clamping by a Membrane Ligand Activates the EphA2 Receptor. Journal of Molecular Biology, 2021, 433, 167144.	4.2	10
71	Identification of peptides that neutralize bacterial endotoxins using beta-hairpin conformationally restricted libraries. Molecular Diversity, 2000, 5, 117-126.	3.9	9
72	Stitching proteins into membranes, not sew simple. Biological Chemistry, 2014, 395, 1417-1424.	2.5	8

#	Article	IF	Citations
73	N-Linked Glycosylation of the p24 Family Protein p24δ5 Modulates Retrograde Golgi-to-ER Transport of K/HDEL Ligands in Arabidopsis. Molecular Plant, 2017, 10, 1095-1106.	8.3	8
74	Role of pulmonary surfactant protein Sp-C dimerization on membrane fragmentation: An emergent mechanism involved in lung defense and homeostasis. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183572.	2.6	8
75	Molecular and topological membrane folding determinants of transient receptor potential vanilloid 2 channel. Biochemical and Biophysical Research Communications, 2015, 462, 221-226.	2.1	6
76	NMR Investigation of Structures of G-protein Coupled Receptor Folding Intermediates. Journal of Biological Chemistry, 2016, 291, 27170-27186.	3.4	6
77	Folding and Insertion of Transmembrane Helices at the ER. International Journal of Molecular Sciences, 2021, 22, 12778.	4.1	5
78	A transmembrane serine residue in the Rot1 protein is essential for yeast cell viability. Biochemical Journal, 2014, 458, 239-249.	3.7	4
79	Direct HPLC Monitoring of Lipase Activity in Reverse Micellar Media. Journal of Liquid Chromatography and Related Technologies, 1995, 18, 235-244.	1.0	3
80	Insertion of Bacteriorhodopsin Helix C Variants into Biological Membranes. ACS Omega, 2020, 5, 556-560.	3.5	3
81	Methodological approaches for the analysis of transmembrane domain interactions: A systematic review. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183712.	2.6	3
82	Interfacial Activation-Based Molecular Bioimprinting: Towards a More Rational Use of Lipolytic Enzymes in Nonaqueous Media., 1996,, 229-242.		3
83	Intra-Helical Salt Bridge Contribution to Membrane Protein Insertion. Journal of Molecular Biology, 2022, 434, 167467.	4.2	3
84	Controllable membrane remodeling by a modified fragment of the apoptotic protein Bax. Faraday Discussions, 2021, 232, 114-130.	3.2	2
85	Effects of KL4-Type Peptides on the Surface Activity and Stability of Pulmonary Surfactant Films as Evaluated in the Captive Bubble Surfactometer. Biophysical Journal, 2012, 102, 491a.	0.5	1
86	Characterization of the inner membrane protein BB0173 from Borrelia burgdorferi. BMC Microbiology, 2017, 17, 219.	3.3	1
87	Biophysical Characterization of TRPV2 Ion Channel. Biophysical Journal, 2012, 102, 342a.	0.5	0
88	Membrane-Perturbing Activities of KL4-Related Surfactant Peptides. Biophysical Journal, 2013, 104, 94a-95a.	0.5	0
89	Differences in the Association of BH3-Only Proteins to Biological Membranes. Biophysical Journal, 2017, 112, 205a.	0.5	0
90	The Role of Hydrophobic Mismatch on Transmembrane Helix Dimerization in Living Cells. Biophysical Journal, 2019, 116, 90a.	0.5	0

#	Article	IF	CITATIONS
91	The importance of transmembrane domain interactions in the viral control of apoptosis. Molecular and Cellular Oncology, 2021, 8, 1911290.	0.7	O
92	Distant downstream sequence determinants can control N-tail translocation during protein insertion into the endoplasmic reticulum membrane Journal of Biological Chemistry, 2000, 275, 10716.	3.4	0
93	Helix-Helix Packing Between Transmembrane Fragments. Principles and Practice, 2004, , 1-14.	0.3	0