

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3309944/publications.pdf

Version: 2024-02-01

NATI

#	Article	IF	CITATIONS
1	Unipolar stroke, electroosmotic pump carbon nanotube yarn muscles. Science, 2021, 371, 494-498.	12.6	110
2	Torsional refrigeration by twisted, coiled, and supercoiled fibers. Science, 2019, 366, 216-221.	12.6	133
3	Enhancing the Work Capacity of Electrochemical Artificial Muscles by Coiling Plies of Twist-Released Carbon Nanotube Yarns. ACS Applied Materials & Interfaces, 2019, 11, 13533-13537.	8.0	34
4	Sheath-run artificial muscles. Science, 2019, 365, 150-155.	12.6	218
5	Largeâ€Stroke Electrochemical Carbon Nanotube/Graphene Hybrid Yarn Muscles. Small, 2018, 14, e1801883.	10.0	50
6	Highâ€Performance Biscrolled MXene/Carbon Nanotube Yarn Supercapacitors. Small, 2018, 14, e1802225.	10.0	158
7	High Power Density Electrochemical Thermocells for Inexpensively Harvesting Lowâ€Grade Thermal Energy. Advanced Materials, 2017, 29, 1605652.	21.0	166
8	Electrochemically Powered, Energy onserving Carbon Nanotube Artificial Muscles. Advanced Materials, 2017, 29, 1700870.	21.0	110
9	Harvesting electrical energy from carbon nanotube yarn twist. Science, 2017, 357, 773-778.	12.6	306
10	Polarâ€Electrodeâ€Bridged Electroluminescent Displays: 2D Sensors Remotely Communicating Optically. Advanced Materials, 2017, 29, 1703552.	21.0	49
11	New twist on artificial muscles. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11709-11716.	7.1	254
12	Strong, Twist‣table Carbon Nanotube Yarns and Muscles by Tension Annealing at Extreme Temperatures. Advanced Materials, 2016, 28, 6598-6605.	21.0	100
13	Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson's ratio. Nature Communications, 2015, 6, 6141.	12.8	458
14	Simple and strong: twisted silver painted nylon artificial muscle actuated by Joule heating. Proceedings of SPIE, 2014, , .	0.8	44
15	Artificial Muscles from Fishing Line and Sewing Thread. Science, 2014, 343, 868-872.	12.6	1,006
16	Towards ionic liquid-based thermoelectrochemical cells for the harvesting of thermal energy. Electrochimica Acta, 2013, 113, 87-93.	5.2	81
17	Carbon Nanotube – Reduced Graphene Oxide Composites for Thermal Energy Harvesting Applications. Advanced Materials, 2013, 25, 6602-6606.	21.0	178
18	Electrically, Chemically, and Photonically Powered Torsional and Tensile Actuation of Hybrid Carbon Nanotube Yarn Muscles. Science, 2012, 338, 928-932.	12.6	585

Na Li

#	Article	IF	CITATIONS
19	Electromechanical Actuator with Controllable Motion, Fast Response Rate, and High-Frequency Resonance Based on Graphene and Polydiacetylene. ACS Nano, 2012, 6, 4508-4519.	14.6	141
20	Electrical Power From Nanotube and Graphene Electrochemical Thermal Energy Harvesters. Advanced Functional Materials, 2012, 22, 477-489.	14.9	180
21	Synthesis of semiconducting SWNTs by arc discharge and their enhancement of water splitting performance with TiO2 photocatalyst. Carbon, 2011, 49, 5132-5141.	10.3	25
22	Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films. Nano Research, 2010, 3, 661-669.	10.4	269
23	Facile and Scalable Fabrication of Wellâ€Aligned and Closely Packed Singleâ€Walled Carbon Nanotube Films on Various Substrates. Advanced Materials, 2010, 22, 3067-3070.	21.0	45
24	Direct and large scale electric arc discharge synthesis of boron and nitrogen doped single-walled carbon nanotubes and their electronic properties. Carbon, 2009, 47, 2112-2115.	10.3	113