
Daniel J Owens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3309574/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Knockdown of the E3 ubiquitin ligase UBR5 and its role in skeletal muscle anabolism. American Journal of Physiology - Cell Physiology, 2021, 320, C45-C56.	4.6	20
2	Carbohydrate improves exercise capacity but does not affect subcellular lipid droplet morphology, AMPK and p53 signalling in human skeletal muscle. Journal of Physiology, 2021, 599, 2823-2849.	2.9	16
3	Four Weeks of Probiotic Supplementation Alters the Metabolic Perturbations Induced by Marathon Running: Insight from Metabolomics. Metabolites, 2021, 11, 535.	2.9	7
4	"Fuel for the Damage Induced― Untargeted Metabolomics in Elite Rugby Union Match Play. Metabolites, 2021, 11, 544.	2.9	7
5	Lamin-Related Congenital Muscular Dystrophy Alters Mechanical Signaling and Skeletal Muscle Growth. International Journal of Molecular Sciences, 2021, 22, 306.	4.1	15
6	Three weeks of a home-based "sleep low-train low―intervention improves functional threshold power in trained cyclists: A feasibility study. PLoS ONE, 2021, 16, e0260959.	2.5	4
7	DNA methylation across the genome in aged human skeletal muscle tissue and muscle-derived cells: the role of HOX genes and physical activity. Scientific Reports, 2020, 10, 15360.	3.3	63
8	Graded reductions in preâ€exercise glycogen concentration do not augment exerciseâ€induced nuclear AMPK and PGCâ€1α protein content in human muscle. Experimental Physiology, 2020, 105, 1882-1894.	2.0	8
9	Lamin Mutations Cause Increased YAP Nuclear Entry in Muscle Stem Cells. Cells, 2020, 9, 816.	4.1	28
10	Exerciseâ€induced muscle damage: What is it, what causes it and what are the nutritional solutions?. European Journal of Sport Science, 2019, 19, 71-85.	2.7	172
11	UBR5 is a novel E3 ubiquitin ligase involved in skeletal muscle hypertrophy and recovery from atrophy. Journal of Physiology, 2019, 597, 3727-3749.	2.9	53
12	Micro <scp>RNA</scp> â€184 and its long noncoding <scp>RNA</scp> sponge urothelial carcinoma associated 1 are induced in wounded keratinocytes in a storeâ€operated calcium entryâ€dependent manner. British Journal of Dermatology, 2019, 180, 1533-1534.	1.5	4
13	Vitamin D and the Athlete: Current Perspectives and New Challenges. Sports Medicine, 2018, 48, 3-16.	6.5	138
14	Nutritional Support to Counteract Muscle Atrophy. Advances in Experimental Medicine and Biology, 2018, 1088, 483-495.	1.6	10
15	Efficacy of High-Dose Vitamin D Supplements for Elite Athletes. Medicine and Science in Sports and Exercise, 2017, 49, 349-356.	0.4	43
16	Gonad-related factors promote muscle performance gain during postnatal development in male and female mice. American Journal of Physiology - Endocrinology and Metabolism, 2017, 313, E12-E25.	3.5	15
17	Vitamin D status in chronic fatigue syndrome/myalgic encephalomyelitis: a cohort study from the North-West of England. BMJ Open, 2017, 7, e015296.	1.9	13
18	<scp>l</scp> â€glutamine Improves Skeletal Muscle Cell Differentiation and Prevents Myotube Atrophy After Cytokine (TNFâ€Î±) Stress Via Reduced p38 MAPK Signal Transduction. Journal of Cellular Physiology, 2016, 231, 2720-2732.	4.1	41

DANIEL J OWENS

#	Article	IF	CITATIONS
19	Skeletal muscle cells possess a †memory' of acute early life TNF-α exposure: role of epigenetic adaptation. Biogerontology, 2016, 17, 603-617.	3.9	55
20	A systems-based investigation into vitamin D and skeletal muscle repair, regeneration, and hypertrophy. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E1019-E1031.	3.5	113
21	Fasted Exercise and Increased Dietary Protein Reduces Body Fat and Improves Strength in Jockeys. International Journal of Sports Medicine, 2015, 36, 1008-1014.	1.7	20
22	Leucine-enriched protein feeding does not impair exercise-induced free fatty acid availability and lipid oxidation: beneficial implications for training in carbohydrate-restricted states. Amino Acids, 2015, 47, 407-416.	2.7	28
23	Vitamin D and the athlete: Emerging insights. European Journal of Sport Science, 2015, 15, 73-84.	2.7	52
24	Lifelong training preserves some redox-regulated adaptive responses after an acute exercise stimulus in aged human skeletal muscle. Free Radical Biology and Medicine, 2014, 70, 23-32.	2.9	74
25	Vitamin D supplementation does not improve human skeletal muscle contractile properties in insufficient young males. European Journal of Applied Physiology, 2014, 114, 1309-1320.	2.5	33
26	Assessment of vitamin D concentration in non-supplemented professional athletes and healthy adults during the winter months in the UK: implications for skeletal muscle function. Journal of Sports Sciences, 2013, 31, 344-353.	2.0	192
27	The effects of vitamin D ₃ supplementation on serum total 25[OH]D concentration and physical performance: a randomised dose–response study. British Journal of Sports Medicine, 2013, 47, 692-696.	6.7	129