Gilbert H Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3309404/publications.pdf

Version: 2024-02-01

		201674	206112
55	3,312	27	48
papers	citations	h-index	g-index
F.C	E.C.	E.C.	1046
56	56	56	1946
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sequence conservation of mitochondrial (mt)DNA during expansion of clonal mammary epithelial populations suggests a common mtDNA template in Czechll mice. Oncotarget, 2020, 11, 161-174.	1.8	O
2	Long-label-retaining mammary epithelial cells are created early in ductal development and distributed throughout the branching ducts. Mechanisms of Development, 2019, 159, 103565.	1.7	2
3	Microarray and pathway analysis of two COMMA-D \hat{l}^2 derived clones reveal important differences relevant to their developmental capacity in-vivo. Oncotarget, 2019, 10, 2118-2135.	1.8	1
4	Does the Mouse Mammary Gland Arise from Unipotent or Multipotent Mammary Stem/Progenitor Cells?. Journal of Mammary Gland Biology and Neoplasia, 2018, 23, 1-3.	2.7	7
5	Mammary extracellular matrix directs differentiation of testicular and embryonic stem cells to form functional mammary glands in vivo. Scientific Reports, 2017, 7, 40196.	3.3	36
6	In vivo reprogramming of non-mammary cells to an epithelial cell fate is independent of amphiregulin signaling. Journal of Cell Science, 2017, 130, 2018-2025.	2.0	3
7	Techniques for the Reprogramming of Exogenous Stem/Progenitor Cell Populations Towards a Mammary Epithelial Cell Fate. Methods in Molecular Biology, 2017, 1501, 277-289.	0.9	0
8	In vivo reprogramming of non-mammary cells to an epithelial cell fate is independent of amphiregulin signaling. Development (Cambridge), 2017, 144, e1.1-e1.1.	2.5	0
9	Mammary Epithelial Cell Lineage Analysis via the Lyon's Hypothesis. International Journal of Stem Cell Research and Therapy, 2016, 3, .	1.0	2
10	Hormone Signaling Requirements for the Conversion of Non-Mammary Mouse Cells to Mammary Cell Fate(s) in Vivo. Journal of Mammary Gland Biology and Neoplasia, 2015, 20, 93-101.	2.7	4
11	Paracrine rescued lobulogenesis in chimeric outgrowths comprised of progesterone receptor null mammary epithelium and redirected wild-type testicular cells. Journal of Cell Science, 2014, 127, 27-32.	2.0	10
12	A potential mechanism for extracellular matrix induction of breast cancer cell normality. Breast Cancer Research, 2014, 16, 302.	5.0	4
13	Embryonic Stem Cells Are Redirected to Non-Tumorigenic Epithelial Cell Fate by Interaction with the Mammary Microenvironment. PLoS ONE, 2013, 8, e62019.	2.5	27
14	Redirection of Human Cancer Cells upon the Interaction with the Regenerating Mouse Mammary Gland Microenvironment. Cells, 2013, 2, 43-56.	4.1	7
15	The Mouse Mammary Microenvironment Redirects Mesoderm-Derived Bone Marrow Cells to a Mammary Epithelial Progenitor Cell Fate. Stem Cells and Development, 2012, 21, 948-954.	2.1	38
16	Reprogramming non-mammary and cancer cells in the developing mouse mammary gland. Seminars in Cell and Developmental Biology, 2012, 23, 591-598.	5.0	26
17	Human Breast Cancer Cells Are Redirected to Mammary Epithelial Cells upon Interaction with the Regenerating Mammary Gland Microenvironment In-Vivo. PLoS ONE, 2012, 7, e49221.	2.5	42
18	Effects of Age and Parity on Mammary Gland Lesions and Progenitor Cells in the FVB/N-RC Mice. PLoS ONE, 2012, 7, e43624.	2.5	28

#	Article	IF	CITATIONS
19	Functional Characterization of Stem Cell Activity in the Mouse Mammary Gland. Stem Cell Reviews and Reports, 2011, 7, 238-247.	5.6	22
20	Amphiregulin mediates self-renewal in an immortal mammary epithelial cell line with stem cell characteristics. Experimental Cell Research, 2010, 316, 422-432.	2.6	39
21	Reprogramming Human Cancer Cells in the Mouse Mammary Gland. Cancer Research, 2010, 70, 6336-6343.	0.9	83
22	Reprogramming cell fates in the mammary microenvironment. Cell Cycle, 2009, 8, 1127-1132.	2.6	25
23	The Mouse as a Model for Mammary Tumorigenesis: History and Current Aspects. Journal of Mammary Gland Biology and Neoplasia, 2008, 13, 269-269.	2.7	4
24	Selective segregation of DNA strands persists in long label retaining mammary cells during pregnancy. Breast Cancer Research, 2008, 10, R90.	5.0	29
25	Re-evaluation of mammary stem cell biology based on in vivotransplantation. Breast Cancer Research, 2008, 10, 203.	5.0	81
26	The mammary microenvironment alters the differentiation repertoire of neural stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14891-14896.	7.1	121
27	Interaction with the mammary microenvironment redirects spermatogenic cell fate <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3871-3876.	7.1	146
28	Alveolar progenitor cells develop in mouse mammary glands independent of pregnancy and lactation. Journal of Cellular Physiology, 2007, 212, 729-736.	4.1	65
29	Estrogen receptor-α and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands. Breast Cancer Research, 2006, 8, R49.	5.0	103
30	Mammary stem cells come of age, prospectively. Trends in Molecular Medicine, 2006, 12, 287-289.	6.7	14
31	Stem Cells and Mammary Cancer in Mice. Stem Cell Reviews and Reports, 2005, 1, 215-224.	5.6	16
32	Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF- \hat{l}^21 expression. Oncogene, 2005, 24, 552-560.	5.9	191
33	Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development (Cambridge), 2005, 132, 681-687.	2.5	266
34	Parity-induced mammary epithelial cells facilitate tumorigenesis in MMTV-neu transgenic mice. Oncogene, 2004, 23, 6980-6985.	5.9	116
35	Mammary epithelial stem cells: transplantation and selfâ€renewal analysis. Cell Proliferation, 2003, 36, 3-15.	5.3	47
36	Mammary stem cell repertoire: new insights in aging epithelial populations. Mechanisms of Ageing and Development, 2002, 123, 1505-1519.	4.6	45

#	Article	IF	Citations
37	An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development (Cambridge), 2002, 129, 1377-1386.	2.5	232
38	An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development (Cambridge), 2002, 129, 1377-86.	2.5	141
39	Mammary epithelial stem cells. Microscopy Research and Technique, 2001, 52, 190-203.	2.2	156
40	Impairment of mammary lobular development induced by expression of TGF?1 under the control of WAP promoter does not suppress tumorigenesis in MMTV-infected transgenic mice. International Journal of Cancer, 2001, 92, 568-576.	5.1	18
41	Reducing mammary cancer risk through premature stem cell senescence. Oncogene, 2001, 20, 2264-2272.	5.9	93
42	Evidence for the transforming activity of a truncated Int6 gene, in vitro. Oncogene, 2001, 20, 5291-5301.	5.9	68
43	Mammary epithelial stem cells. , 2001, 52, 190.		2
44	MMTV-induced mammary tumorigenesis: gene discovery, progression to malignancy and cellular pathways. Oncogene, 2000, 19, 992-1001.	5.9	166
45	Experimental mammary epithelial morphogenesis in anin vivo model: Evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Research and Treatment, 1996, 39, 21-31.	2.5	230
46	TGF- \hat{l}^2 and functional differentiation. Journal of Mammary Gland Biology and Neoplasia, 1996, 1, 343-352.	2.7	23
47	Understanding mammary gland development through the imbalanced expression of growth regulators. , 1996, 206, 159-168.		22
48	Detection of amphiregulin and Cripto-1 in mammary tumors from transgenic mice., 1996, 15, 44-56.		48
49	Ectopic $TGF\hat{l}^21$ Expression in the Secretory Mammary Epithelium Induces Early Senescence of the Epithelial Stem Cell Population. Developmental Biology, 1995, 168, 47-61.	2.0	164
50	The effect of parity, tumor latency and transplantation on the activation ofint loci in mmtv-induced, transplanted C3H mammary pre-neoplasias and their tumors. International Journal of Cancer, 1992, 51, 805-811.	5.1	13
51	Stromal influences on transformation of human mammary epithelial cells overexpressingc-myc and SV40T. Journal of Cellular Physiology, 1990, 145, 207-216.	4.1	53
52	Functional differentiation of virgin mouse mammary epithelium in explant culture is dependent upon extracellular proline. Journal of Cellular Physiology, 1987, 131, 190-199.	4.1	21
53	Functional differentiation in mouse mammary gland epithelium is attained through DNA synthesis, inconsequent of mitosis. Developmental Biology, 1981, 88, 167-179.	2.0	58
54	Distribution of intracisternal a-particles in a variety of normal and neoplastic mouse tissues. International Journal of Cancer, 1971, 7, 167-175.	5.1	150

#	Article	lF	CITATIONS
55	Attempts to Detect Nodule-Inducing Virus in Strain RIII Mice. Journal of the National Cancer Institute, 0, , .	6.3	4