Xinhui Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3309297/publications.pdf Version: 2024-02-01

Хімыні Гн

#	Article	IF	CITATIONS
1	Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule, 2019, 3, 1140-1151.	24.0	4,052
2	A Facile Planar Fused-Ring Electron Acceptor for As-Cast Polymer Solar Cells with 8.71% Efficiency. Journal of the American Chemical Society, 2016, 138, 2973-2976.	13.7	885
3	Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells. Journal of the American Chemical Society, 2017, 139, 1336-1343.	13.7	813
4	Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy and Environmental Science, 2020, 13, 635-645.	30.8	636
5	Layerâ€byâ€Layer Processed Ternary Organic Photovoltaics with Efficiency over 18%. Advanced Materials, 2021, 33, e2007231.	21.0	438
6	Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency. Journal of the American Chemical Society, 2020, 142, 20134-20142.	13.7	414
7	Fused Hexacyclic Nonfullerene Acceptor with Strong Nearâ€Infrared Absorption for Semitransparent Organic Solar Cells with 9.77% Efficiency. Advanced Materials, 2017, 29, 1701308.	21.0	364
8	Effect of Isomerization on High-Performance Nonfullerene Electron Acceptors. Journal of the American Chemical Society, 2018, 140, 9140-9147.	13.7	361
9	Simple non-fused electron acceptors for efficient and stable organic solar cells. Nature Communications, 2019, 10, 2152.	12.8	348
10	A spirobifluorene and diketopyrrolopyrrole moieties based non-fullerene acceptor for efficient and thermally stable polymer solar cells with high open-circuit voltage. Energy and Environmental Science, 2016, 9, 604-610.	30.8	347
11	Fine-Tuning Energy Levels via Asymmetric End Groups Enables Polymer Solar Cells with Efficiencies over 17%. Joule, 2020, 4, 1236-1247.	24.0	344
12	A monothiophene unit incorporating both fluoro and ester substitution enabling high-performance donor polymers for non-fullerene solar cells with 16.4% efficiency. Energy and Environmental Science, 2019, 12, 3328-3337.	30.8	337
13	Orientation Regulation of Phenylethylammonium Cation Based 2D Perovskite Solar Cell with Efficiency Higher Than 11%. Advanced Energy Materials, 2018, 8, 1702498.	19.5	313
14	Enhancing the Performance of Polymer Solar Cells via Core Engineering of NIRâ€Absorbing Electron Acceptors. Advanced Materials, 2018, 30, e1706571.	21.0	309
15	Fused Benzothiadiazole: A Building Block for nâ€īype Organic Acceptor to Achieve Highâ€Performance Organic Solar Cells. Advanced Materials, 2019, 31, e1807577.	21.0	297
16	Highly Tunable Selectivity for Syngasâ€Derived Alkenes over Zinc and Sodiumâ€Modulated Fe ₅ C ₂ Catalyst. Angewandte Chemie - International Edition, 2016, 55, 9902-9907.	13.8	296
17	Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%. Science China Chemistry, 2020, 63, 325-330.	8.2	292
18	Selenium Heterocyclic Electron Acceptor with Small Urbach Energy for As-Cast High-Performance Organic Solar Cells. Journal of the American Chemical Society, 2020, 142, 18741-18745.	13.7	288

#	Article	IF	CITATIONS
19	Precisely Controlling the Position of Bromine on the End Group Enables Wellâ€Regular Polymer Acceptors for Allâ€Polymer Solar Cells with Efficiencies over 15%. Advanced Materials, 2020, 32, e2005942.	21.0	282
20	Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors. Joule, 2021, 5, 1548-1565.	24.0	281
21	A high dielectric constant non-fullerene acceptor for efficient bulk-heterojunction organic solar cells. Journal of Materials Chemistry A, 2018, 6, 395-403.	10.3	272
22	16.7%-efficiency ternary blended organic photovoltaic cells with PCBM as the acceptor additive to increase the open-circuit voltage and phase purity. Journal of Materials Chemistry A, 2019, 7, 20713-20722.	10.3	266
23	Modulation of Defects and Interfaces through Alkylammonium Interlayer for Efficient Inverted Perovskite Solar Cells. Joule, 2020, 4, 1248-1262.	24.0	260
24	Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nature Photonics, 2021, 15, 681-689.	31.4	255
25	Anionic defect engineering of transition metal oxides for oxygen reduction and evolution reactions. Journal of Materials Chemistry A, 2019, 7, 5875-5897.	10.3	252
26	Asymmetric Electron Acceptors for Highâ€Efficiency and Lowâ€Energy‣oss Organic Photovoltaics. Advanced Materials, 2020, 32, e2001160.	21.0	246
27	Bioinspired Janus Textile with Conical Micropores for Human Body Moisture and Thermal Management. Advanced Materials, 2019, 31, e1904113.	21.0	243
28	Realizing Small Energy Loss of 0.55 eV, High Openâ€Circuit Voltage >1 V and High Efficiency >10% in Fullereneâ€Free Polymer Solar Cells via Energy Driver. Advanced Materials, 2017, 29, 1605216.	21.0	230
29	16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend. Joule, 2021, 5, 914-930.	24.0	228
30	Morphology Optimization via Side Chain Engineering Enables All-Polymer Solar Cells with Excellent Fill Factor and Stability. Journal of the American Chemical Society, 2018, 140, 8934-8943.	13.7	218
31	A nonfullerene acceptor with a 1000 nm absorption edge enables ternary organic solar cells with improved optical and morphological properties and efficiencies over 15%. Energy and Environmental Science, 2019, 12, 2529-2536.	30.8	213
32	Hidden Structure Ordering Along Backbone of Fusedâ€Ring Electron Acceptors Enhanced by Ternary Bulk Heterojunction. Advanced Materials, 2018, 30, e1802888.	21.0	212
33	Fullerene derivative anchored SnO ₂ for high-performance perovskite solar cells. Energy and Environmental Science, 2018, 11, 3463-3471.	30.8	205
34	Adding a Third Component with Reduced Miscibility and Higher LUMO Level Enables Efficient Ternary Organic Solar Cells. ACS Energy Letters, 2020, 5, 2711-2720.	17.4	188
35	Reducing Hysteresis and Enhancing Performance of Perovskite Solar Cells Using Lowâ€Temperature Processed Yâ€Doped SnO ₂ Nanosheets as Electron Selective Layers. Small, 2017, 13, 1601769.	10.0	183
36	Unveiling the additive-assisted oriented growth of perovskite crystallite for high performance light-emitting diodes. Nature Communications, 2021, 12, 5081.	12.8	178

#	Article	IF	CITATIONS
37	Simple Nonâ€Fused Electron Acceptors Leading to Efficient Organic Photovoltaics. Angewandte Chemie - International Edition, 2021, 60, 12964-12970.	13.8	172
38	Highâ€Performance Blue Perovskite Lightâ€Emitting Diodes Enabled by Efficient Energy Transfer between Coupled Quasiâ€2D Perovskite Layers. Advanced Materials, 2021, 33, e2005570.	21.0	171
39	High-performance and eco-friendly semitransparent organic solar cells for greenhouse applications. Joule, 2021, 5, 945-957.	24.0	171
40	Concurrent improvement in <i>J</i> _{SC} and <i>V</i> _{OC} in high-efficiency ternary organic solar cells enabled by a red-absorbing small-molecule acceptor with a high LUMO level. Energy and Environmental Science, 2020, 13, 2115-2123.	30.8	164
41	Asymmetric Acceptors with Fluorine and Chlorine Substitution for Organic Solar Cells toward 16.83% Efficiency. Advanced Functional Materials, 2020, 30, 2000456.	14.9	164
42	Highâ€Performance Noncovalently Fusedâ€Ring Electron Acceptors for Organic Solar Cells Enabled by Noncovalent Intramolecular Interactions and Endâ€Group Engineering. Angewandte Chemie - International Edition, 2021, 60, 12475-12481.	13.8	155
43	Improving the Activity for Oxygen Evolution Reaction by Tailoring Oxygen Defects in Double Perovskite Oxides. Advanced Functional Materials, 2019, 29, 1901783.	14.9	152
44	Understanding Morphology Compatibility for High-Performance Ternary Organic Solar Cells. Chemistry of Materials, 2016, 28, 6186-6195.	6.7	150
45	Thiazole Imideâ€Based Allâ€Acceptor Homopolymer: Achieving Highâ€Performance Unipolar Electron Transport in Organic Thinâ€Film Transistors. Advanced Materials, 2018, 30, 1705745.	21.0	150
46	Regioâ€Regular Polymer Acceptors Enabled by Determined Fluorination on End Groups for Allâ€Polymer Solar Cells with 15.2 % Efficiency. Angewandte Chemie - International Edition, 2021, 60, 10137-10146.	13.8	145
47	Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors. Matter, 2022, 5, 725-734.	10.0	145
48	Highâ€Performance Semitransparent Organic Solar Cells with Excellent Infrared Reflection and Seeâ€Through Functions. Advanced Materials, 2020, 32, e2001621.	21.0	140
49	Zwitterionic-Surfactant-Assisted Room-Temperature Coating of Efficient Perovskite Solar Cells. Joule, 2020, 4, 2404-2425.	24.0	137
50	Revisiting the origin of cycling enhanced capacity of Fe3O4 based nanostructured electrode for lithium ion batteries. Nano Energy, 2017, 41, 426-433.	16.0	136
51	Graded bulk-heterojunction enables 17% binary organic solar cells via nonhalogenated open air coating. Nature Communications, 2021, 12, 4815.	12.8	135
52	Molecular Lock: A Versatile Key to Enhance Efficiency and Stability of Organic Solar Cells. Advanced Materials, 2016, 28, 5822-5829.	21.0	134
53	Highly Selective Olefin Production from CO ₂ Hydrogenation on Iron Catalysts: A Subtle Synergy between Manganese and Sodium Additives. Angewandte Chemie - International Edition, 2020, 59, 21736-21744.	13.8	132
54	A Vinylene‣inkerâ€Based Polymer Acceptor Featuring a Coplanar and Rigid Molecular Conformation Enables Highâ€Performance Allâ€Polymer Solar Cells with Over 17% Efficiency. Advanced Materials, 2022, 34, e2200361.	21.0	131

#	Article	IF	CITATIONS
55	Manipulating the Mixedâ€Perovskite Crystallization Pathway Unveiled by In Situ GIWAXS. Advanced Materials, 2019, 31, e1901284.	21.0	127
56	Exploiting Ternary Blends for Improved Photostability in High-Efficiency Organic Solar Cells. ACS Energy Letters, 2020, 5, 1371-1379.	17.4	126
57	Three Novel Silver Complexes with Ligand-Unsupported Argentophilic Interactions and Their Luminescent Properties. Inorganic Chemistry, 2006, 45, 3679-3685.	4.0	125
58	Stable and Efficient 3D-2D Perovskite-Perovskite Planar Heterojunction Solar Cell without Organic Hole Transport Layer. Joule, 2018, 2, 2706-2721.	24.0	124
59	Highly Efficient Sn/Pb Binary Perovskite Solar Cell via Precursor Engineering: A Twoâ€Step Fabrication Process. Advanced Functional Materials, 2019, 29, 1807024.	14.9	122
60	Precise Control of Perovskite Crystallization Kinetics via Sequential Aâ€ S ite Doping. Advanced Materials, 2020, 32, e2004630.	21.0	122
61	Compositionâ€Tuned Wide Bandgap Perovskites: From Grain Engineering to Stability and Performance Improvement. Advanced Functional Materials, 2018, 28, 1803130.	14.9	121
62	Revealing the effects of molecular packing on the performances of polymer solar cells based on A–D–C–D–A type non-fullerene acceptors. Journal of Materials Chemistry A, 2018, 6, 12132-12141.	10.3	119
63	The Second Spacer Cation Assisted Growth of a 2D Perovskite Film with Oriented Large Grain for Highly Efficient and Stable Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 9409-9413.	13.8	118
64	Nanoimprint-Induced Molecular Orientation in Semiconducting Polymer Nanostructures. ACS Nano, 2011, 5, 7532-7538.	14.6	117
65	Efficient Organic Solar Cells with Extremely High Openâ€Circuit Voltages and Low Voltage Losses by Suppressing Nonradiative Recombination Losses. Advanced Energy Materials, 2018, 8, 1801699.	19.5	117
66	Nearâ€Infrared Electron Acceptors with Fluorinated Regioisomeric Backbone for Highly Efficient Polymer Solar Cells. Advanced Materials, 2018, 30, e1803769.	21.0	116
67	Tailoring vertical phase distribution of quasi-two-dimensional perovskite films via surface modification of hole-transporting layer. Nature Communications, 2019, 10, 878.	12.8	115
68	Multifunctional Carbon–Silica Nanocapsules with Gold Core for Synergistic Photothermal and Chemo ancer Therapy under the Guidance of Bimodal Imaging. Advanced Functional Materials, 2016, 26, 4252-4261.	14.9	113
69	Low-temperature solution-processed NiO _x films for air-stable perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 11071-11077.	10.3	113
70	8.78% Efficient Allâ€Polymer Solar Cells Enabled by Polymer Acceptors Based on a Bâ†N Embedded Electronâ€Deficient Unit. Advanced Materials, 2019, 31, e1904585.	21.0	113
71	Asymmetric electron acceptor enables highly luminescent organic solar cells with certified efficiency over 18%. Nature Communications, 2022, 13, 2598.	12.8	113
72	Fusedâ€Ring Electron Acceptor ITICâ€Th: A Novel Stabilizer for Halide Perovskite Precursor Solution. Advanced Energy Materials, 2018, 8, 1703399.	19.5	112

#	Article	IF	CITATIONS
73	Effects of Alkyl Chain Length on Crystal Growth and Oxidation Process of Two-Dimensional Tin Halide Perovskites. ACS Energy Letters, 2020, 5, 1422-1429.	17.4	112
74	High-Efficiency Ternary Organic Solar Cells with a Good Figure-of-Merit Enabled by Two Low-Cost Donor Polymers. ACS Energy Letters, 2022, 7, 2547-2556.	17.4	109
75	Functionalized self-assembling peptide nanofiber hydrogels mimic stem cell niche to control human adipose stem cell behavior in vitro. Acta Biomaterialia, 2013, 9, 6798-6805.	8.3	108
76	Multifunctional Crosslinkingâ€Enabled Strainâ€Regulating Crystallization for Stable, Efficient αâ€FAPbI ₃ â€Based Perovskite Solar Cells. Advanced Materials, 2021, 33, e2008487.	21.0	106
77	A Systematic Review of Metal Halide Perovskite Crystallization and Film Formation Mechanism Unveiled by In Situ GIWAXS. Advanced Materials, 2021, 33, e2105290.	21.0	104
78	Altering the Positions of Chlorine and Bromine Substitution on the End Group Enables Highâ€Performance Acceptor and Efficient Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2002649.	19.5	103
79	Effect of Core Size on Performance of Fused-Ring Electron Acceptors. Chemistry of Materials, 2018, 30, 5390-5396.	6.7	102
80	Dual-Accepting-Unit Design of Donor Material for All-Small-Molecule Organic Solar Cells with Efficiency Approaching 11%. Chemistry of Materials, 2018, 30, 8661-8668.	6.7	101
81	Bilayer order in a polycarbazole-conjugated polymer. Nature Communications, 2012, 3, 795.	12.8	100
82	Reductive Transformation of Layeredâ€Doubleâ€Hydroxide Nanosheets to Feâ€Based Heterostructures for Efficient Visibleâ€Light Photocatalytic Hydrogenation of CO. Advanced Materials, 2018, 30, e1803127.	21.0	100
83	Achieving 16.68% efficiency ternary as-cast organic solar cells. Science China Chemistry, 2021, 64, 581-589.	8.2	99
84	Efficient and bright warm-white electroluminescence from lead-free metal halides. Nature Communications, 2021, 12, 1421.	12.8	99
85	Triplet exciton formation for non-radiative voltage loss in high-efficiency nonfullerene organic solar cells. Joule, 2021, 5, 1832-1844.	24.0	98
86	Unveiling structure-performance relationships from multi-scales in non-fullerene organic photovoltaics. Nature Communications, 2021, 12, 4627.	12.8	98
87	A non-fullerene acceptor with a fully fused backbone for efficient polymer solar cells with a high open-circuit voltage. Journal of Materials Chemistry A, 2016, 4, 14983-14987.	10.3	97
88	Molecular insights of exceptionally photostable electron acceptors for organic photovoltaics. Nature Communications, 2021, 12, 3049.	12.8	97
89	Ag-Doped Halide Perovskite Nanocrystals for Tunable Band Structure and Efficient Charge Transport. ACS Energy Letters, 2019, 4, 534-541.	17.4	96
90	Vertical Orientated Dion–Jacobson Quasiâ€2D Perovskite Film with Improved Photovoltaic Performance and Stability. Small Methods, 2020, 4, 1900831.	8.6	96

#	Article	IF	CITATIONS
91	A Nearâ€Infrared Photoactive Morphology Modifier Leads to Significant Current Improvement and Energy Loss Mitigation for Ternary Organic Solar Cells. Advanced Science, 2018, 5, 1800755.	11.2	93
92	Near-Infrared Electron Acceptors with Unfused Architecture for Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 16700-16706.	8.0	93
93	Imide-Functionalized Thiazole-Based Polymer Semiconductors: Synthesis, Structure–Property Correlations, Charge Carrier Polarity, and Thin-Film Transistor Performance. Chemistry of Materials, 2018, 30, 7988-8001.	6.7	92
94	All-Perovskite Emission Architecture for White Light-Emitting Diodes. ACS Nano, 2018, 12, 10486-10492.	14.6	92
95	Roomâ€Temperature Meniscus Coating of >20% Perovskite Solar Cells: A Film Formation Mechanism Investigation. Advanced Functional Materials, 2019, 29, 1900092.	14.9	92
96	Highâ€Performance Organic Solar Cells from Nonâ€Halogenated Solvents. Advanced Functional Materials, 2022, 32, 2107827.	14.9	92
97	Morphology of organic photovoltaic non-fullerene acceptors investigated by grazing incidence X-ray scattering techniques. Materials Today Nano, 2019, 5, 100030.	4.6	91
98	An Electron Acceptor Analogue for Lowering Trap Density in Organic Solar Cells. Advanced Materials, 2021, 33, e2008134.	21.0	91
99	In vivo studies on angiogenic activity of two designer self-assembling peptide scaffold hydrogels in the chicken embryo chorioallantoic membrane. Nanoscale, 2012, 4, 2720.	5.6	89
100	A Dopantâ€Free Polymeric Holeâ€Transporting Material Enabled High Fill Factor Over 81% for Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1902600.	19.5	89
101	Fluorinated End Group Enables Highâ€Performance Allâ€Polymer Solar Cells with Nearâ€Infrared Absorption and Enhanced Device Efficiency over 14%. Advanced Energy Materials, 2021, 11, 2003171.	19.5	89
102	Alkyl Chain Length Effects of Polymer Donors on the Morphology and Device Performance of Polymer Solar Cells with Different Acceptors. Advanced Energy Materials, 2019, 9, 1901740.	19.5	88
103	Tuning terminal aromatics of electron acceptors to achieve high-efficiency organic solar cells. Journal of Materials Chemistry A, 2019, 7, 27632-27639.	10.3	86
104	Photo-Cross-Linkable Azide-Functionalized Polythiophene for Thermally Stable Bulk Heterojunction Solar Cells. Macromolecules, 2012, 45, 2338-2347.	4.8	85
105	Allâ€polymer solar cells with over 16% efficiency and enhanced stability enabled by compatible solvent and polymer additives. Aggregate, 2022, 3, e58.	9.9	85
106	<i>In situ</i> and <i>ex situ</i> investigations on ternary strategy and co-solvent effects towards high-efficiency organic solar cells. Energy and Environmental Science, 2022, 15, 2479-2488.	30.8	84
107	Creating polymer hydrogel microfibres with internal alignment via electrical and mechanical stretching. Biomaterials, 2014, 35, 3243-3251.	11.4	83
108	Energy-level modulation of non-fullerene acceptors to achieve high-efficiency polymer solar cells at a diminished energy offset. Journal of Materials Chemistry A, 2017, 5, 9649-9654.	10.3	83

#	Article	IF	CITATIONS
109	General Nondestructive Passivation by 4â€Fluoroaniline for Perovskite Solar Cells with Improved Performance and Stability. Small, 2018, 14, e1803350.	10.0	82
110	Sideâ€Chain Engineering on Yâ€Series Acceptors with Chlorinated End Groups Enables Highâ€Performance Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2003777.	19.5	82
111	Alkoxy-Induced Near-Infrared Sensitive Electron Acceptor for High-Performance Organic Solar Cells. Chemistry of Materials, 2018, 30, 4150-4156.	6.7	79
112	Triplet Acceptors with a Dâ€A Structure and Twisted Conformation for Efficient Organic Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 15043-15049.	13.8	77
113	High Capacity and Fast Kinetics of Potassium-Ion Batteries Boosted by Nitrogen-Doped Mesoporous Carbon Spheres. Nano-Micro Letters, 2021, 13, 174.	27.0	77
114	Nearâ€Infrared Nonfullerene Acceptors Based on Benzobis(thiazole) Unit for Efficient Organic Solar Cells with Low Energy Loss. Small Methods, 2019, 3, 1900531.	8.6	76
115	High efficiency ternary organic solar cell with morphology-compatible polymers. Journal of Materials Chemistry A, 2017, 5, 11739-11745.	10.3	74
116	Crystallinity Preservation and Ion Migration Suppression through Dual Ion Exchange Strategy for Stable Mixed Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700118.	19.5	74
117	Panchromatic Ternary Photovoltaic Cells Using a Nonfullerene Acceptor Synthesized Using C–H Functionalization. Chemistry of Materials, 2018, 30, 309-313.	6.7	74
118	High-Efficiency All-Polymer Solar Cells with Poly-Small-Molecule Acceptors Having π-Extended Units with Broad Near-IR Absorption. ACS Energy Letters, 2021, 6, 728-738.	17.4	74
119	A Freeâ€Standing Highâ€Output Power Density Thermoelectric Device Based on Structureâ€Ordered PEDOT:PSS. Advanced Electronic Materials, 2018, 4, 1700496.	5.1	73
120	The synergy of host–guest nonfullerene acceptors enables 16%-efficiency polymer solar cells with increased open-circuit voltage and fill-factor. Materials Horizons, 2019, 6, 2094-2102.	12.2	73
121	Designing a Perylene Diimide/Fullerene Hybrid as Effective Electron Transporting Material in Inverted Perovskite Solar Cells with Enhanced Efficiency and Stability. Angewandte Chemie - International Edition, 2019, 58, 8520-8525.	13.8	73
122	High-Performance Fused Ring Electron Acceptor–Perovskite Hybrid. Journal of the American Chemical Society, 2018, 140, 14938-14944.	13.7	71
123	Noise reduction in optical coherence tomography images using a deep neural network with perceptually-sensitive loss function. Biomedical Optics Express, 2020, 11, 817.	2.9	71
124	Two Halogeno(cyano)cuprates with Long-Lived and Strong Luminescence. Inorganic Chemistry, 2005, 44, 4282-4286.	4.0	69
125	Isomerization of Perylene Diimide Based Acceptors Enabling Highâ€Performance Nonfullerene Organic Solar Cells with Excellent Fill Factor. Advanced Science, 2019, 6, 1802065.	11.2	69
126	Antibacterial Property of a Polyethylene Glycol-Grafted Dental Material. ACS Applied Materials & amp; Interfaces, 2017, 9, 17688-17692.	8.0	67

#	Article	IF	CITATIONS
127	Heteroheptacene-based acceptors with thieno[3 <i>,</i> 2- <i>b</i>]pyrrole yield high-performance polymer solar cells. National Science Review, 2022, 9, .	9.5	67
128	Short-range order and near-field effects on optical scattering and structural coloration. Optics Express, 2011, 19, 8208.	3.4	65
129	Intralayer A-Site Compositional Engineering of Ruddlesden–Popper Perovskites for Thermostable and Efficient Solar Cells. ACS Energy Letters, 2019, 4, 1216-1224.	17.4	65
130	Interlayer Interaction Enhancement in Ruddlesden–Popper Perovskite Solar Cells toward High Efficiency and Phase Stability. ACS Energy Letters, 2019, 4, 1025-1033.	17.4	64
131	Manipulating Crystallization Kinetics in Highâ€Performance Bladeâ€Coated Perovskite Solar Cells via Cosolventâ€Assisted Phase Transition. Advanced Materials, 2022, 34, e2200276.	21.0	64
132	How a Liquid Becomes a Glass Both on Cooling and on Heating. Physical Review Letters, 2008, 100, 045701.	7.8	62
133	Perovskite Bifunctional Device with Improved Electroluminescent and Photovoltaic Performance through Interfacial Energyâ€Band Engineering. Advanced Materials, 2019, 31, e1902543.	21.0	62
134	Modifying Surface Termination of CsPbl ₃ Grain Boundaries by 2D Perovskite Layer for Efficient and Stable Photovoltaics. Advanced Functional Materials, 2021, 31, 2009515.	14.9	62
135	Compromising Charge Generation and Recombination with Asymmetric Molecule for Highâ€Performance Binary Organic Photovoltaics with Over 18% Certified Efficiency. Advanced Functional Materials, 2022, 32, .	14.9	62
136	Non-fullerene Acceptors with a Thieno[3,4-c]pyrrole-4,6-dione (TPD) Core for Efficient Organic Solar Cells. Chinese Journal of Polymer Science (English Edition), 2019, 37, 1005-1014.	3.8	61
137	Electron acceptors with varied linkages between perylene diimide and benzotrithiophene for efficient fullerene-free solar cells. Journal of Materials Chemistry A, 2017, 5, 9396-9401.	10.3	60
138	Inâ€situ Transmission Electron Microscope Techniques for Heterogeneous Catalysis. ChemCatChem, 2020, 12, 1853-1872.	3.7	60
139	Highly Efficient Guanidiniumâ€Based Quasi 2D Perovskite Solar Cells via a Twoâ€Step Postâ€Treatment Process. Small Methods, 2019, 3, 1900375.	8.6	59
140	Achieving efficient organic solar cells and broadband photodetectors via simple compositional tuning of ternary blends. Nano Energy, 2019, 63, 103807.	16.0	59
141	A Spider‣ilkâ€Inspired Wet Adhesive with Supercold Tolerance. Advanced Materials, 2021, 33, e2007301.	21.0	59
142	Airâ€Processed Efficient Organic Solar Cells from Aromatic Hydrocarbon Solvent without Solvent Additive or Postâ€Treatment: Insights into Solvent Effect on Morphology. Energy and Environmental Materials, 2022, 5, 977-985.	12.8	59
143	Enhanced Charge Transfer between Fullerene and Non-Fullerene Acceptors Enables Highly Efficient Ternary Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 42444-42452. -	8.0	58
144	Novel Oligomer Enables Green Solvent Processed 17.5% Ternary Organic Solar Cells: Synergistic Energy Loss Reduction and Morphology Fineâ€īuning. Advanced Materials, 2022, 34, e2107659.	21.0	57

#	Article	IF	CITATIONS
145	Visualizing Formation of Intermetallic PdZn in a Palladium/Zinc Oxide Catalyst: Interfacial Fertilization by PdH _{<i>x</i>} . Angewandte Chemie - International Edition, 2019, 58, 4232-4237.	13.8	56
146	Guanidinium doping enabled low-temperature fabrication of high-efficiency all-inorganic CsPbI ₂ Br perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 27640-27647.	10.3	56
147	A New End Group on Nonfullerene Acceptors Endows Efficient Organic Solar Cells with Low Energy Losses. Advanced Functional Materials, 2022, 32, 2108614.	14.9	56
148	A Trialkylsilylthienyl Chain-Substituted Small-Molecule Acceptor with Higher LUMO Level and Reduced Band Gap for Over 16% Efficiency Fullerene-Free Ternary Solar Cells. Chemistry of Materials, 2019, 31, 8908-8917.	6.7	55
149	Non-planar perylenediimide acceptors with different geometrical linker units for efficient non-fullerene organic solar cells. Journal of Materials Chemistry A, 2017, 5, 1713-1723.	10.3	54
150	Nanostructured Surfaces Frustrate Polymer Semiconductor Molecular Orientation. ACS Nano, 2014, 8, 243-249.	14.6	53
151	Enhanced intramolecular charge transfer of unfused electron acceptors for efficient organic solar cells. Materials Chemistry Frontiers, 2019, 3, 513-519.	5.9	53
152	Versatile Sequential Casting Processing for Highly Efficient and Stable Binary Organic Photovoltaics. Advanced Materials, 2022, 34, .	21.0	52
153	A compatible polymer acceptor enables efficient and stable organic solar cells as a solid additive. Journal of Materials Chemistry A, 2020, 8, 17706-17712.	10.3	51
154	Dithieno[3,2â€ <i>b</i> :2ʹ,3ʹâ€ <i>d</i>]pyrrolâ€Fused Asymmetrical Electron Acceptors: A Study into the Effects of Nitrogenâ€Functionalization on Reducing Nonradiative Recombination Loss and Dipole Moment on Morphology. Advanced Science, 2020, 7, 1902657.	11.2	51
155	High-performance all-polymer solar cells enabled by a novel low bandgap non-fully conjugated polymer acceptor. Science China Chemistry, 2021, 64, 1380-1388.	8.2	51
156	Pushing the Efficiency of High Openâ€Circuit Voltage Binary Organic Solar Cells by Vertical Morphology Tuning. Advanced Science, 2022, 9, e2200578.	11.2	51
157	High-performance see-through power windows. Energy and Environmental Science, 2022, 15, 2629-2637.	30.8	51
158	A Novel Wideâ€Bandgap Polymer with Deep Ionization Potential Enables Exceeding 16% Efficiency in Ternary Nonfullerene Polymer Solar Cells. Advanced Functional Materials, 2020, 30, 1910466.	14.9	50
159	Constructing highly efficient all-inorganic perovskite solar cells with efficiency exceeding 17% by using dopant-free polymeric electron-donor materials. Nano Energy, 2020, 75, 104933.	16.0	50
160	Understanding of Imine Substitution in Wide-Bandgap Polymer Donor-Induced Efficiency Enhancement in All-Polymer Solar Cells. Chemistry of Materials, 2019, 31, 8533-8542.	6.7	49
161	Near infrared electron acceptors with a photoresponse beyond 1000 nm for highly efficient organic solar cells. Journal of Materials Chemistry A, 2020, 8, 18154-18161.	10.3	49
162	Conformationâ€Tuning Effect of Asymmetric Small Molecule Acceptors on Molecular Packing, Interaction, and Photovoltaic Performance. Small, 2020, 16, e2001942.	10.0	49

#	Article	IF	CITATIONS
163	Additiveâ€Assisted Hotâ€Casting Free Fabrication of Dion–Jacobson 2D Perovskite Solar Cell with Efficiency Beyond 16%. Solar Rrl, 2020, 4, 2000087.	5.8	49
164	Unraveling the Impact of Halide Mixing on Crystallization and Phase Evolution in CsPbX3 Perovskite Solar Cells. Matter, 2021, 4, 313-327.	10.0	49
165	Regulating Favorable Morphology Evolution by a Simple Liquid-Crystalline Small Molecule Enables Organic Solar Cells with over 17% Efficiency and a Remarkable <i>J</i> _{sc} of 26.56 mA/cm ² . Chemistry of Materials, 2021, 33, 430-440.	6.7	49
166	Achieving Balanced Charge Transport and Favorable Blend Morphology in Non-Fullerene Solar Cells via Acceptor End Group Modification. Chemistry of Materials, 2019, 31, 1752-1760.	6.7	48
167	A 16.4% efficiency organic photovoltaic cell enabled using two donor polymers with their side-chains oriented differently by a ternary strategy. Journal of Materials Chemistry A, 2020, 8, 3676-3685.	10.3	48
168	A Medium Bandgap D–A Copolymer Based on 4-Alkyl-3,5-difluorophenyl Substituted Quinoxaline Unit for High Performance Solar Cells. Macromolecules, 2018, 51, 2838-2846.	4.8	47
169	Enhancing the performance of non-fullerene organic solar cells <i>via</i> end group engineering of fused-ring electron acceptors. Journal of Materials Chemistry A, 2018, 6, 16638-16644.	10.3	47
170	Significantly improving the performance of polymer solar cells by the isomeric ending-group based small molecular acceptors: Insight into the isomerization. Nano Energy, 2019, 66, 104146.	16.0	47
171	Improving the performance of near infrared binary polymer solar cells by adding a second non-fullerene intermediate band-gap acceptor. Journal of Materials Chemistry C, 2020, 8, 909-915.	5.5	47
172	Asymmetric Glycolated Substitution for Enhanced Permittivity and Ecocompatibility of High-Performance Photovoltaic Electron Acceptor. Jacs Au, 2021, 1, 1733-1742.	7.9	47
173	Enhancement of intra- and inter-molecular π-conjugated effects for a non-fullerene acceptor to achieve high-efficiency organic solar cells with an extended photoresponse range and optimized morphology. Materials Chemistry Frontiers, 2018, 2, 2006-2012.	5.9	46
174	Highâ€Efficiency Perovskite Quantum Dot Hybrid Nonfullerene Organic Solar Cells with Nearâ€Zero Driving Force. Advanced Materials, 2020, 32, e2002066.	21.0	46
175	Asymmetric Isomer Effects in Benzo[<i>c</i>][1,2,5]thiadiazoleâ€Fused Nonacyclic Acceptors: Dielectric Constant and Molecular Crystallinity Control for Significant Photovoltaic Performance Enhancement. Advanced Functional Materials, 2021, 31, 2104369.	14.9	46
176	18.02% Efficiency ternary organic solar cells with a small-molecular donor third component. Chemical Engineering Journal, 2021, 424, 130397.	12.7	46
177	High Open Circuit Voltage Over 1ÂV Achieved in Tinâ€Based Perovskite Solar Cells with a 2D/3D Vertical Heterojunction. Advanced Science, 2022, 9, e2200242.	11.2	46
178	Grazing-incidence transmission X-ray scattering: surface scattering in the Born approximation. Journal of Applied Crystallography, 2013, 46, 165-172.	4.5	45
179	Improved photon-to-electron response of ternary blend organic solar cells with a low band gap polymer sensitizer and interfacial modification. Journal of Materials Chemistry A, 2016, 4, 1702-1707.	10.3	45
180	Asymmetric fused-ring electron acceptor with two distinct terminal groups for efficient organic solar cells. Journal of Materials Chemistry A, 2019, 7, 8055-8060.	10.3	45

#	Article	IF	CITATIONS
181	Fluorescence switching method for cascade detection of salicylaldehyde and zinc(II) ion using protein protected gold nanoclusters. Biosensors and Bioelectronics, 2015, 74, 322-328.	10.1	44
182	Bottomâ€Up Quasiâ€Epitaxial Growth of Hybrid Perovskite from Solution Process—Achieving Highâ€Efficiency Solar Cells via Template â€Guided Crystallization. Advanced Materials, 2021, 33, e2100009.	21.0	44
183	Carbon Hollow Tube-Confined Sb/Sb ₂ S ₃ Nanorod Fragments as Highly Stable Anodes for Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 51066-51077.	8.0	44
184	Comparison of Linear- and Star-Shaped Fused-Ring Electron Acceptors. , 2019, 1, 367-374.		43
185	Crystal Engineering of Biphenylene-Containing Acenes for High-Mobility Organic Semiconductors. Journal of the American Chemical Society, 2019, 141, 3589-3596.	13.7	43
186	Simple Near-Infrared Electron Acceptors for Efficient Photovoltaics and Sensitive Photodetectors. ACS Applied Materials & Interfaces, 2020, 12, 39515-39523.	8.0	43
187	Medium band-gap non-fullerene acceptors based on a benzothiophene donor moiety enabling high-performance indoor organic photovoltaics. Energy and Environmental Science, 2021, 14, 4555-4563.	30.8	43
188	Rhodanine flanked indacenodithiophene as non-fullerene acceptor for efficient polymer solar cells. Science China Chemistry, 2017, 60, 257-263.	8.2	42
189	Selective production of phase-separable product from a mixture of biomass-derived aqueous oxygenates. Nature Communications, 2018, 9, 5183.	12.8	42
190	Two-dimensional inverted planar perovskite solar cells with efficiency over 15% <i>via</i> solvent and interface engineering. Journal of Materials Chemistry A, 2019, 7, 18980-18986.	10.3	41
191	Conformation Locking of Simple Nonfused Electron Acceptors Via Multiple Intramolecular Noncovalent Bonds to Improve the Performances of Organic Solar Cells. ACS Applied Energy Materials, 2021, 4, 819-827.	5.1	40
192	Highly oriented MAPbI3 crystals for efficient hole-conductor-free printable mesoscopic perovskite solar cells. Fundamental Research, 2022, 2, 276-283.	3.3	40
193	Room-temperature multiple ligands-tailored SnO2 quantum dots endow in situ dual-interface binding for upscaling efficient perovskite photovoltaics with high VOC. Light: Science and Applications, 2021, 10, 239.	16.6	40
194	Conjugated Polymers Based on Difluorobenzoxadiazole toward Practical Application of Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1702033.	19.5	39
195	Interfacial engineering enables high efficiency with a high open-circuit voltage above 1.23ÂV in 2D perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 18010-18017.	10.3	39
196	Overcoming the energy loss in asymmetrical non-fullerene acceptor-based polymer solar cells by halogenation of polymer donors. Journal of Materials Chemistry A, 2019, 7, 15404-15410.	10.3	39
197	Understanding Charge Transport in All-Inorganic Halide Perovskite Nanocrystal Thin-Film Field Effect Transistors. ACS Energy Letters, 2020, 5, 2614-2623.	17.4	39
198	Enhanced Fischer–Tropsch performances of graphene oxide-supported iron catalysts <i>via</i> argon pretreatment. Catalysis Science and Technology, 2018, 8, 1113-1125.	4.1	38

#	Article	IF	CITATIONS
199	An inverted planar solar cell with 13% efficiency and a sensitive visible light detector based on orientation regulated 2D perovskites. Journal of Materials Chemistry A, 2018, 6, 24633-24640.	10.3	38
200	Fine-tuning HOMO energy levels between PM6 and PBDB-T polymer donors via ternary copolymerization. Science China Chemistry, 2020, 63, 1256-1261.	8.2	38
201	Achieving 17.38% efficiency of ternary organic solar cells enabled by a large-bandgap donor with noncovalent conformational locking. Journal of Materials Chemistry A, 2021, 9, 11734-11740.	10.3	38
202	Enhancement of Photovoltaic Performance by Utilizing Readily Accessible Hole Transporting Layer of Vanadium(V) Oxide Hydrate in a Polymer–Fullerene Blend Solar Cell. ACS Applied Materials & Interfaces, 2016, 8, 11658-11666.	8.0	37
203	A low-temperature formation path toward highly efficient Se-free Cu ₂ ZnSnS ₄ solar cells fabricated through sputtering and sulfurization. CrystEngComm, 2016, 18, 1070-1077.	2.6	37
204	Enhanced Electron Transport and Heat Transfer Boost Light Stability of Ternary Organic Photovoltaic Cells Incorporating Nonâ€Fullerene Small Molecule and Polymer Acceptors. Advanced Electronic Materials, 2019, 5, 1900497.	5.1	37
205	Simultaneously increasing open-circuit voltage and short-circuit current to minimize the energy loss in organic solar cells <i>via</i> designing asymmetrical non-fullerene acceptor. Journal of Materials Chemistry A, 2019, 7, 11053-11061.	10.3	37
206	An asymmetric small molecule acceptor for organic solar cells with a short circuit current density over 24 mA cm ^{â^'2} . Journal of Materials Chemistry A, 2020, 8, 15984-15991.	10.3	37
207	A Wettingâ€Enabledâ€Transfer (WET) Strategy for Precise Surface Patterning of Organohydrogels. Advanced Materials, 2021, 33, e2008557.	21.0	36
208	Comparative study of deep learning models for optical coherence tomography angiography. Biomedical Optics Express, 2020, 11, 1580.	2.9	35
209	Highly Tunable Selectivity for Syngasâ€Đerived Alkenes over Zinc and Sodiumâ€Modulated Fe ₅ C ₂ Catalyst. Angewandte Chemie, 2016, 128, 10056-10061.	2.0	34
210	Highâ€Performance All‧mallâ€Molecule Organic Solar Cells Enabled by Regioâ€Isomerization of Noncovalently Conformational Locks. Advanced Functional Materials, 2022, 32, .	14.9	34
211	15.71% Efficiency Allâ€Smallâ€Molecule Organic Solar Cells Based on Lowâ€Cost Synthesized Donor Molecules. Advanced Functional Materials, 2022, 32, .	14.9	34
212	Asymmetric Janus adhesive tape prepared by interfacial hydrosilylation for wet/dry amphibious adhesion. NPG Asia Materials, 2019, 11, .	7.9	33
213	Synergistic Effects of Chlorination and Branched Alkyl Side Chain on the Photovoltaic Properties of Simple Nonâ€Fullerene Acceptors with Quinoxaline as the Core. ChemSusChem, 2021, 14, 3599-3606.	6.8	33
214	Efficient Slantwise Aligned Dion–Jacobson Phase Perovskite Solar Cells Based on Transâ€1,4 yclohexanediamine. Small, 2020, 16, e2003098.	10.0	33
215	Adipose stem cells controlled by surface chemistry. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 112-117.	2.7	32
216	Molecular Packing and Electronic Processes in Amorphous-like Polymer Bulk Heterojunction Solar Cells with Fullerene Intercalation. Scientific Reports, 2014, 4, 5211.	3.3	32

#	Article	IF	CITATIONS
217	High-performance ternary organic solar cells with photoresponses beyond 1000 nm. Journal of Materials Chemistry A, 2018, 6, 24210-24215.	10.3	31
218	A deep learning based pipeline for optical coherence tomography angiography. Journal of Biophotonics, 2019, 12, e201900008.	2.3	31
219	Direct conversion of CO and H2O into liquid fuels under mild conditions. Nature Communications, 2019, 10, 1389.	12.8	31
220	Highâ€Performance Noncovalently Fusedâ€Ring Electron Acceptors for Organic Solar Cells Enabled by Noncovalent Intramolecular Interactions and Endâ€Group Engineering. Angewandte Chemie, 2021, 133, 12583-12589.	2.0	31
221	Extended Structures and Magnetic Properties of Lanthanide-Copper Complexes with Picolinic Acids as Bridging Ligands. European Journal of Inorganic Chemistry, 2005, 2005, 1947-1954.	2.0	30
222	Improving Polymer/Nanocrystal Hybrid Solar Cell Performance via Tuning Ligand Orientation at CdSe Quantum Dot Surface. ACS Applied Materials & Interfaces, 2014, 6, 19154-19160.	8.0	30
223	Nonhalogenated Solvent-Processed All-Polymer Solar Cells over 7.4% Efficiency from Quinoxaline-Based Polymers. ACS Applied Materials & Interfaces, 2018, 10, 41318-41325.	8.0	30
224	Band bending near grain boundaries of Cu2ZnSn(S,Se)4 thin films and its effect on photovoltaic performance. Nano Energy, 2018, 51, 37-44.	16.0	30
225	Doping Highâ€Mobility Donor–Acceptor Copolymer Semiconductors with an Organic Salt for Highâ€Performance Thermoelectric Materials. Advanced Electronic Materials, 2020, 6, 1900945.	5.1	30
226	Perovskite Quantum Wells Formation Mechanism for Stable Efficient Perovskite Photovoltaics—A Realâ€Time Phaseâ€Transition Study. Advanced Materials, 2021, 33, e2006238.	21.0	30
227	Solvation effect in precursor solution enables over 16% efficiency in thick 2D perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 19423-19429.	10.3	29
228	Ladderâ€Type Nonacyclic Arene Bis(thieno[3,2â€b]thieno)cyclopentafluorene as a Promising Building Block for Nonâ€Fullerene Acceptors. Chemistry - an Asian Journal, 2019, 14, 1814-1822.	3.3	29
229	ITCâ€2Cl: A Versatile Middleâ€Bandgap Nonfullerene Acceptor for Highâ€Efficiency Panchromatic Ternary Organic Solar Cells. Solar Rrl, 2020, 4, 1900377.	5.8	29
230	Passivating Charged Defects with 1,6-Hexamethylenediamine To Realize Efficient and Stable Tin-Based Perovskite Solar Cells. Journal of Physical Chemistry C, 2020, 124, 16289-16299.	3.1	29
231	WETâ€Induced Layered Organohydrogel as Bioinspired "Stickyâ^'Slippy Skin―for Robust Underwater Oilâ€Repellency. Advanced Materials, 2022, 34, e2110408.	21.0	29
232	Protein-mediated anti-adhesion surface against oral bacteria. Nanoscale, 2018, 10, 2711-2714.	5.6	28
233	Ethyne-Reducing Metal–Organic Frameworks to Control Fabrications of Core/shell Nanoparticles as Catalysts. ACS Catalysis, 2018, 8, 7120-7130.	11.2	28
234	Combining Fusedâ€Ring and Unfusedâ€Core Electron Acceptors Enables Efficient Ternary Organic Solar Cells with Enhanced Fill Factor and Broad Compositional Tolerance. Solar Rrl, 2019, 3, 1900317.	5.8	28

#	Article	IF	CITATIONS
235	Simple thiazole-centered oligothiophene donor enables 15.4% efficiency all small molecule organic solar cells. Journal of Materials Chemistry A, 2022, 10, 3009-3017.	10.3	28
236	Ternary morphology facilitated thick-film organic solar cell. RSC Advances, 2015, 5, 88500-88507.	3.6	27
237	Design of wide-bandgap polymers with deeper ionization potential enables efficient ternary non-fullerene polymer solar cells with 13% efficiency. Journal of Materials Chemistry A, 2019, 7, 14153-14162.	10.3	27
238	Influences of Quinoid Structures on Stability and Photovoltaic Performance of Nonfullerene Acceptors. Solar Rrl, 2020, 4, 2000286.	5.8	27
239	Improved organic solar cell efficiency based on the regulation of an alkyl chain on chlorinated non-fullerene acceptors. Materials Chemistry Frontiers, 2020, 4, 2428-2434.	5.9	27
240	Excess Ion-Induced Efficiency Roll-Off in High-Efficiency Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 28546-28554.	8.0	27
241	Fused octacyclic electron acceptor isomers for organic solar cells. Journal of Materials Chemistry A, 2019, 7, 21432-21437.	10.3	26
242	A non-fullerene acceptor enables efficient P3HT-based organic solar cells with small voltage loss and thickness insensitivity. Chinese Chemical Letters, 2019, 30, 1277-1281.	9.0	26
243	A Nonfullerene Acceptor with Alkylthio―and Dimethoxyâ€Thiopheneâ€Groups Yielding Highâ€Performance Ternary Organic Solar Cells. Solar Rrl, 2020, 4, 1900353.	5.8	26
244	Oriented Perovskite Crystal towards Efficient Charge Transport in FASnI ₃ Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000153.	5.8	26
245	Organic Photovoltaic Catalyst with Extended Exciton Diffusion for High-Performance Solar Hydrogen Evolution. Journal of the American Chemical Society, 2022, 144, 12747-12755.	13.7	26
246	Two novel halogeno(cyano)argentates built by silver halide clusters: molecular structures and luminescent properties. CrystEngComm, 2011, 13, 5724.	2.6	25
247	Medium-Bandgap Small-Molecule Donors Compatible with Both Fullerene and Nonfullerene Acceptors. ACS Applied Materials & Interfaces, 2018, 10, 9587-9594.	8.0	25
248	Control over Light Soaking Effect in Allâ€Inorganic Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2101287.	14.9	25
249	Correlating the Molecular Structure of Aâ€DA′Dâ€A Type Nonâ€Fullerene Acceptors to Its Heat Transfer and Charge Transport Properties in Organic Solar Cells. Advanced Functional Materials, 2021, 31, 2101627.	14.9	25
250	The <i>Legionella</i> Effector SdjA Is a Bifunctional Enzyme That Distinctly Regulates Phosphoribosyl Ubiquitination. MBio, 2021, 12, e0231621.	4.1	25
251	Two novel halogeno(cyano)argentates with efficient luminescence. Dalton Transactions, 2006, , 884-886.	3.3	24
252	Molecular design of luminescent halogeno-thiocyano-d10 metal complexes with in situ formation of the thiocyanate ligand. CrystEngComm, 2009, 11, 1615.	2.6	24

#	Article	IF	CITATIONS
253	Injectable bone cement based on mineralized collagen. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 94B, 72-79.	3.4	24
254	Distinction between PTB7-Th samples prepared from Pd(PPh ₃) ₄ and Pd ₂ (dba) ₃ /P(<i>o</i> -tol) ₃ catalysed stille coupling polymerization and the resultant photovoltaic performance. Journal of Materials Chemistry A, 2018, 6, 179-188.	10.3	24
255	Single-phase alkylammonium cesium lead iodide quasi-2D perovskites for color-tunable and spectrum-stable red LEDs. Nanoscale, 2019, 11, 16907-16918.	5.6	24
256	Green perovskite light-emitting diodes with simultaneous high luminance and quantum efficiency through charge injection engineering. Science Bulletin, 2020, 65, 1832-1839.	9.0	24
257	Ternary organic solar cells with 16.88% efficiency enabled by a twisted perylene diimide derivative to enhance the open-circuit voltage. Journal of Materials Chemistry C, 2021, 9, 3826-3834.	5.5	24
258	Revealing the role of solvent additives in morphology and energy loss in benzodifuran polymer-based non-fullerene organic solar cells. Journal of Materials Chemistry A, 2021, 9, 26105-26112.	10.3	24
259	NIR Photodetectors with Highly Efficient Detectivity Enabled by 2D Fluorinated Dithienopicenocarbazoleâ€Based Ultraâ€Narrow Bandgap Acceptors. Advanced Functional Materials, 2022, 32, .	14.9	24
260	Molecular Orientation and Performance of Nanoimprinted Polymer-Based Blend Thin Film Solar Cells. Chemistry of Materials, 2015, 27, 60-66.	6.7	23
261	Hydrocarbonsâ€Driven Crystallization of Polymer Semiconductors for Lowâ€Temperature Fabrication of Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2018, 28, 1706372.	14.9	23
262	Electrostatic Force–Driven Oxide Heteroepitaxy for Interface Control. Advanced Materials, 2018, 30, e1707017.	21.0	23
263	The Second Spacer Cation Assisted Growth of a 2D Perovskite Film with Oriented Large Grain for Highly Efficient and Stable Solar Cells. Angewandte Chemie, 2019, 131, 9509-9513.	2.0	23
264	Charge carrier transport and nanomorphology control for efficient non-fullerene organic solar cells. Materials Today Energy, 2019, 12, 398-407.	4.7	23
265	Highly Selective Olefin Production from CO 2 Hydrogenation on Iron Catalysts: A Subtle Synergy between Manganese and Sodium Additives. Angewandte Chemie, 2020, 132, 21920-21928.	2.0	23
266	Reducing <scp><i>V</i>_{OC}</scp> loss via structure compatible and high <scp>lowest unoccupied molecular orbital</scp> nonfullerene acceptors for over 17%â€efficiency ternary organic photovoltaics. EcoMat, 2020, 2, e12061.	11.9	23
267	Non-fullerene acceptors with nitrogen-containing six-membered heterocycle cores for the applications in organic solar cells. Solar Energy Materials and Solar Cells, 2021, 225, 111046.	6.2	23
268	Compatibility between Solubility and Enhanced Crystallinity of Benzotriazole-Based Small Molecular Acceptors with Less Bulky Alkyl Chains for Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 36053-36061.	8.0	23
269	Uncovering the out-of-plane nanomorphology of organic photovoltaic bulk heterojunction by GTSAXS. Nature Communications, 2021, 12, 6226.	12.8	23
270	Construction of three-dimensional nitrogen doped porous carbon flake electrodes for advanced potassium-ion hybrid capacitors. Journal of Colloid and Interface Science, 2022, 606, 1940-1949.	9.4	23

#	Article	IF	CITATIONS
271	ZnO electron transporting layer engineering realized over 20% efficiency and over 1.28 V openâ€circuit voltage in allâ€inorganic perovskite solar cells. EcoMat, 2022, 4, .	11.9	23
272	Roles of Acceptor Guests in Tuning the Organic Solar Cell Property Based on an Efficient Binary Material System with a Nearly Zero Hole-Transfer Driving Force. Chemistry of Materials, 2020, 32, 5182-5191.	6.7	22
273	Intrinsically Chemo- and Thermostable Electron Acceptors for Efficient Organic Solar Cells. Bulletin of the Chemical Society of Japan, 2021, 94, 183-190.	3.2	22
274	Unveiling the crystalline packing of Y6 in thin films by thermally induced "backbone-on―orientation. Journal of Materials Chemistry A, 2021, 9, 17030-17038.	10.3	22
275	Optimizing side chains on different nitrogen aromatic rings achieving 17% efficiency for organic photovoltaics. Journal of Energy Chemistry, 2022, 65, 173-178.	12.9	22
276	Non-fused medium bandgap electron acceptors for efficient organic photovoltaics. Journal of Energy Chemistry, 2022, 70, 576-582.	12.9	22
277	Enhancing Efficiency and Stability of Organic Solar Cells by UV Absorbent. Solar Rrl, 2017, 1, 1700148.	5.8	21
278	Highâ€Performance Nonfullerene Organic Solar Cells with Unusual Inverted Structure. Solar Rrl, 2020, 4, 2000115.	5.8	21
279	Structural regulation of thiophene-fused benzotriazole as a "π-bridge―for A-Ï€-D-ÏЄ-A type acceptor:P3HT-based OSCs to achieve high efficiency. Journal of Materials Chemistry A, 2021, 9, 6520-6528.	10.3	21
280	Realizing 8.6% Efficiency from Nonâ€Halogenated Solvent Processed Additive Free All Polymer Solar Cells with a Quinoxaline Based Polymer. Solar Rrl, 2019, 3, 1800340.	5.8	20
281	Boosting Highly Efficient Hydrocarbon Solvent-Processed All-Polymer-Based Organic Solar Cells by Modulating Thin-Film Morphology. ACS Applied Materials & Interfaces, 2021, 13, 34301-34307.	8.0	20
282	Copper phosphotungstate as low cost, solution-processed, stable inorganic anode interfacial material enables organic photovoltaics with over 18% efficiency. Nano Energy, 2022, 94, 106923.	16.0	20
283	Investigation of chemical vapour deposition MoS ₂ field effect transistors on SiO ₂ and ZrO ₂ substrates. Nanotechnology, 2017, 28, 164004.	2.6	19
284	Constructing D–A copolymers based on thiophene-fused benzotriazole units containing different alkyl side-chains for non-fullerene polymer solar cells. Journal of Materials Chemistry C, 2017, 5, 8179-8186.	5.5	19
285	Facile synthesis of high-performance nonfullerene acceptor isomers <i>via</i> a one stone two birds strategy. Journal of Materials Chemistry A, 2019, 7, 20667-20674.	10.3	19
286	Enhancing the <i>J</i> _{SC} of P3HT-Based OSCs via a Thiophene-Fused Aromatic Heterocycle as a "̀-Bridge―for Aâ^'π–Dâ^'π–A-Type Acceptors. ACS Applied Materials & Interfaces, 2019, 11, 26005-26016.	8.0	19
287	Adjusting Aggregation Modes and Photophysical and Photovoltaic Properties of Diketopyrrolopyrroleâ€Based Small Molecules by Introducing Bâ†N Bonds. Chemistry - A European Journal, 2019, 25, 564-572.	3.3	19
288	Ternary All-Polymer Solar Cells With 8.5% Power Conversion Efficiency and Excellent Thermal Stability. Frontiers in Chemistry, 2020, 8, 302.	3.6	19

#	Article	IF	CITATIONS
289	1â€Chloronaphthaleneâ€Induced Donor/Acceptor Vertical Distribution and Carrier Dynamics Changes in Nonfullerene Organic Solar Cells and the Governed Mechanism. Small Methods, 2022, 6, e2101475.	8.6	19
290	Enhancing Transition Dipole Moments of Heterocyclic Semiconductors via Rational Nitrogen‧ubstitution for Sensitive Near Infrared Detection. Advanced Materials, 2022, 34, e2201600.	21.0	19
291	Spinodal decomposition in Pd41.25Ni41.25P17.5 bulk metallic glasses. Journal of Non-Crystalline Solids, 2014, 385, 40-46.	3.1	18
292	Thiazolothienyl imide-based wide bandgap copolymers for efficient polymer solar cells. Journal of Materials Chemistry C, 2019, 7, 11142-11151.	5.5	18
293	Z-Shaped Fused-Chrysene Electron Acceptors for Organic Photovoltaics. ACS Applied Materials & Interfaces, 2019, 11, 33006-33011.	8.0	18
294	Introducing an identical benzodithiophene donor unit for polymer donors and small-molecule acceptors to unveil the relationship between the molecular structure and photovoltaic performance of non-fullerene organic solar cells. Journal of Materials Chemistry A, 2019, 7, 26351-26357.	10.3	18
295	Cascade Typeâ€II 2D/3D Perovskite Heterojunctions for Enhanced Stability and Photovoltaic Efficiency. Solar Rrl, 2020, 4, 2000282.	5.8	18
296	Improved Crystallization and Stability of Mixed-Cation Tin Iodide for Lead-Free Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 5415-5426.	5.1	18
297	Simple Nonâ€Fused Electron Acceptors Leading to Efficient Organic Photovoltaics. Angewandte Chemie, 2021, 133, 13074-13080.	2.0	18
298	Inâ€Depth Mechanism Understanding for Potassiumâ€ion Batteries by Electroanalytical Methods and Advanced In Situ Characterization Techniques. Small Methods, 2021, 5, e2101130.	8.6	18
299	Chlorination Strategyâ€Induced Abnormal Nanomorphology Tuning in Highâ€Efficiency Organic Solar Cells: A Study of Phenylâ€Substituted Benzodithiopheneâ€Based Nonfullerene Acceptors. Solar Rrl, 2019, 3, 1900262.	5.8	17
300	Simply planarizing nonfused perylene diimide based acceptors toward promising non-fullerene solar cells. Journal of Materials Chemistry C, 2019, 7, 8092-8100.	5.5	17
301	Soft Porous Blade Printing of Nonfullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 25843-25852.	8.0	17
302	Fluorinated pyrazine-based D–A conjugated polymers for efficient non-fullerene polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 7083-7089.	10.3	17
303	A Benzobis(thiazole)-Based Wide Bandgap Polymer Donor Enables over 15% Efficiency Organic Photovoltaics with a Flat Energetic Offset. Macromolecules, 2021, 54, 7862-7869.	4.8	17
304	Introducing Electron-Withdrawing Linking Units and Thiophene π-Bridges into Polymerized Small Molecule Acceptors for High-Efficiency All-Polymer Solar Cells. Chemistry of Materials, 2021, 33, 8212-8222.	6.7	17
305	Tailoring the Morphology's Microevolution for Binary All-Polymer Solar Cells Processed by Aromatic Hydrocarbon Solvent with 16.22% Efficiency. ACS Applied Materials & Interfaces, 2022, 14, 29956-29963.	8.0	17
306	Electron Acceptors With a Truxene Core and Perylene Diimide Branches for Organic Solar Cells: The Effect of Ring-Fusion. Frontiers in Chemistry, 2018, 6, 328.	3.6	16

#	Article	IF	CITATIONS
307	Thioether Bond Modification Enables Boosted Photovoltaic Performance of Nonfullerene Polymer Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 32218-32224.	8.0	16
308	Enhancing Open-Circuit Voltage of High-Efficiency Nonfullerene Ternary Solar Cells with a Star-Shaped Acceptor. ACS Applied Materials & amp; Interfaces, 2020, 12, 50660-50667.	8.0	16
309	Highâ€Efficiency Ternary Organic Solar Cells Based on the Synergized Polymeric and Smallâ€Molecule Donors. Solar Rrl, 2020, 4, 2000537.	5.8	16
310	Doubleâ€Side Crystallization Tuning to Achieve over 1µm Thick and Wellâ€Aligned Blockâ€Like Narrowâ€Bandgap Perovskites for Highâ€Efficiency Nearâ€Infrared Photodetectors. Advanced Functional Materials, 2021, 31, 2010532.	14.9	16
311	Ester side chains engineered quinoxaline based D-A copolymers for high-efficiency all-polymer solar cells. Chemical Engineering Journal, 2022, 429, 132551.	12.7	16
312	Temperature-dependent structural arrest of silica colloids in a water–lutidine binary mixture. Soft Matter, 2010, 6, 6160.	2.7	15
313	Broadband plasmon-enhanced polymer solar cells with power conversion efficiency of 9.26% using mixed Au nanoparticles. Optics Communications, 2016, 362, 50-58.	2.1	15
314	A-D-A small molecule donors based on pyrene and diketopyrrolopyrrole for organic solar cells. Science China Chemistry, 2017, 60, 561-569.	8.2	15
315	Boosting the photovoltaic thermal stability of fullerene bulk heterojunction solar cells through charge transfer interactions. Journal of Materials Chemistry A, 2017, 5, 23662-23670.	10.3	15
316	Ternary Blending Driven Molecular Reorientation of Non-Fullerene Acceptor IDIC with Backbone Order. ACS Applied Energy Materials, 2020, 3, 10814-10822.	5.1	15
317	Recent Progress of Spider-Silk-Inspired Adhesive Materials. , 2021, 3, 1453-1467.		15
318	Ternary polymerization strategy to approach 12% efficiency in all-polymer solar cells processed by green solvent and additive. Chemical Engineering Journal, 2022, 429, 132407.	12.7	15
319	Waterâ€Vaporâ€Assisted Nanoimprinting of PEDOT:PSS Thin Films. Small, 2012, 8, 3443-3447.	10.0	14
320	Osteogenesis of mineralized collagen bone graft modified by PLA and calcium sulfate hemihydrate: <i>InÂvivo</i> study. Journal of Biomaterials Applications, 2013, 28, 12-19.	2.4	14
321	<i>In Vivo</i> Osteogenesis of Vancomycin Loaded Nanohydroxyapatite/Collagen/Calcium Sulfate Composite for Treating Infectious Bone Defect Induced by Chronic Osteomyelitis. Journal of Nanomaterials, 2015, 2015, 1-8.	2.7	14
322	Designing a Perylene Diimide/Fullerene Hybrid as Effective Electron Transporting Material in Inverted Perovskite Solar Cells with Enhanced Efficiency and Stability. Angewandte Chemie, 2019, 131, 8608.	2.0	14
323	Size Modulation and Heterovalent Doping Facilitated Hybrid Organic and Perovskite Quantum Dot Bulk Heterojunction Solar Cells. ACS Applied Energy Materials, 2020, 3, 11359-11367.	5.1	14
324	High-Quality MAPbBr ₃ Cuboid Film with Promising Optoelectronic Properties Prepared by a Hot Methylamine Precursor Approach. ACS Applied Materials & Interfaces, 2020, 12, 24498-24504.	8.0	14

#	Article	IF	CITATIONS
325	A Pyrroleâ€Fused Asymmetrical Electron Acceptor for Polymer Solar Cells with Approaching 16% Efficiency. Small Structures, 2021, 2, 2000052.	12.0	14
326	Design of All-Small-Molecule Organic Solar Cells Approaching 14% Efficiency via Isometric Terminal Alkyl Chain Engineering. Energies, 2021, 14, 2505.	3.1	14
327	Ambipolar-transport wide-bandgap perovskite interlayer for organic photovoltaics with over 18% efficiency. Matter, 2022, 5, 2238-2250.	10.0	14
328	Modulating the nanoscale morphology on carboxylate-pyrazine containing terpolymer toward 17.8% efficiency organic solar cells with enhanced thermal stability. Chemical Engineering Journal, 2022, 446, 137424.	12.7	14
329	Structure characteristics of AlN whiskers fabricated by the carbo-thermal reduction method. Journal of Materials Science, 1998, 33, 4249-4253.	3.7	13
330	The role of emissive charge transfer states in two polymer–fullerene organic photovoltaic blends: tuning charge photogeneration through the use of processing additives. Journal of Materials Chemistry A, 2014, 2, 12583-12593.	10.3	13
331	Engineering subcellular-patterned biointerfaces to regulate the surface wetting of multicellular spheroids. Nano Research, 2018, 11, 5704-5715.	10.4	13
332	A medium-bandgap small molecule donor compatible with both fullerene and unfused-ring nonfullerene acceptors for efficient organic solar cells. Journal of Materials Chemistry C, 2019, 7, 13396-13401.	5.5	13
333	Fine-tuning the solid-state ordering and thermoelectric performance of regioregular P3HT analogues by sequential oxygen-substitution of carbon atoms along the alkyl side chains. Journal of Materials Chemistry C, 2019, 7, 2333-2344.	5.5	13
334	Bioinspired Superhydrophobic Ni–Ti Archwires with Resistance to Bacterial Adhesion and Nickel Ion Release. Advanced Materials Interfaces, 2019, 6, 1801569.	3.7	13
335	Bulk Heterojunction Quasi-Two-Dimensional Perovskite Solar Cell with 1.18 V High Photovoltage. ACS Applied Materials & Interfaces, 2019, 11, 2935-2943.	8.0	13
336	Influence of Bridging Groups on the Photovoltaic Properties of Wide-Bandgap Poly(BDTT- <i>alt</i> -BDD)s. ACS Applied Materials & Interfaces, 2019, 11, 1394-1401.	8.0	13
337	Regioâ€Regular Polymer Acceptors Enabled by Determined Fluorination on End Groups for Allâ€Polymer Solar Cells with 15.2 % Efficiency. Angewandte Chemie, 2021, 133, 10225-10234.	2.0	13
338	Effects of Alkyl Side Chains of Small Molecule Donors on Morphology and the Photovoltaic Property of All-Small-Molecule Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 54237-54245.	8.0	13
339	Influence of altering chlorine substitution positions on the photovoltaic properties of small molecule donors in all-small-molecule organic solar cells. Journal of Materials Chemistry C, 2022, 10, 2017-2025.	5.5	12
340	Side-chain engineering with chalcogen-containing heterocycles on non-fullerene acceptors for efficient organic solar cells. Chemical Engineering Journal, 2022, 441, 135998.	12.7	12
341	15.8% efficiency all-small-molecule solar cells enabled by a combination of side-chain engineering and polymer additive. Journal of Materials Chemistry A, 2022, 10, 10926-10934.	10.3	12
342	Realizing the efficiency-stability balance for all-polymer photovoltaic blends. Journal of Materials Chemistry C, 2022, 10, 9723-9729.	5.5	12

#	Article	IF	CITATIONS
343	A Ladder-type Heteroheptacene 12 <i>H</i> -Dithieno[2′,3′:4,5]thieno[3,2- <i>b</i> :2′,3′- <i>h</i>]fluo Based D-A Copolymer with Strong Intermolecular Interactions toward Efficient Polymer Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 35159-35168.	rene 8.0	11
344	Sensitivity of Molecular Packing and Photovoltaic Performance to Subtle Fluctuation of Steric Distortions within D–A Copolymer Backbones. ACS Applied Energy Materials, 2018, 1, 4332-4340.	5.1	11
345	Controlled Synthesis of Copper-Doped Molybdenum Carbide Catalyst with Enhanced Activity and Stability for Hydrogen Evolution Reaction. Catalysis Letters, 2019, 149, 1368-1374.	2.6	11
346	Bis(thieno[3,2- <i>b</i>]thieno)cyclopentafluorene-Based Acceptor with Efficient and Comparable Photovoltaic Performance under Various Processing Conditions. ACS Applied Materials & Interfaces, 2020, 12, 49876-49885.	8.0	11
347	Triplet Acceptors with a Dâ€A Structure and Twisted Conformation for Efficient Organic Solar Cells. Angewandte Chemie, 2020, 132, 15153-15159.	2.0	11
348	Bifunctional Effects of Trichloro(octyl)silane Modification on the Performance and Stability of a Perovskite Solar Cell via Microscopic Characterization Techniques. ACS Applied Energy Materials, 2020, 3, 3302-3309.	5.1	11
349	An Alkoxyâ€Solubilizing Decacyclic Electron Acceptor for Efficient Ecofriendly Asâ€Cast Bladeâ€Coated Organic Solar Cells. Solar Rrl, 2020, 4, 2000108.	5.8	11
350	Diluted Organic Semiconductors in Photovoltaics. Solar Rrl, 2020, 4, 2000261.	5.8	11
351	Additiveâ€Assisted Hotâ€Casting Free Fabrication of Dion–Jacobson 2D Perovskite Solar Cell with Efficiency Beyond 16%. Solar Rrl, 2020, 4, 2070074.	5.8	11
352	Sâ<⁻Cl intramolecular interaction: An efficient strategy to improve power conversion efficiency of organic solar cells. Dyes and Pigments, 2020, 179, 108416.	3.7	11
353	Synergy strategy to the flexible alkyl and chloride side-chain engineered quinoxaline-based D–A conjugated polymers for efficient non-fullerene polymer solar cells. Materials Chemistry Frontiers, 2021, 5, 1906-1916.	5.9	11
354	Trifluoromethylphenylacetic Acid as In Situ Accelerant of Ostwald Ripening for Stable and Efficient Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100040.	5.8	11
355	Effect of Isomerization of Linking Units on the Photovoltaic Performance of PSMA-Type Polymer Acceptors in All-Polymer Solar Cells. Macromolecules, 2022, 55, 4420-4428.	4.8	11
356	Influence of Donor–Acceptor Arrangement on Charge Transport in Conjugated Copolymers. Journal of Physical Chemistry C, 2014, 118, 5600-5605.	3.1	10
357	Poly(sodium 4-styrenseulfonate)-modified monolayer graphene for anode applications of organic photovoltaic cells. Applied Physics Letters, 2017, 111, .	3.3	10
358	High open-circuit voltage organic solar cells enabled by a difluorobenzoxadiazole-based conjugated polymer donor. Science China Chemistry, 2019, 62, 829-836.	8.2	10
359	Sulfur vs. tellurium: the heteroatom effects on the nonfullerene acceptors. Science China Chemistry, 2019, 62, 897-903.	8.2	10
360	A thiophene-fused benzotriazole unit as a "π-bridge―in A-ï€-D-ï€-A type acceptor to achieve more balanced JSC and VOC for OSCs. Organic Electronics, 2020, 82, 105705.	2.6	10

#	Article	IF	CITATIONS
361	Revealing the microstructure-related light-induced degradation for all-polymer solar cells based on regioisomerized end-capping group acceptors. Journal of Materials Chemistry C, 2022, 10, 1246-1258.	5.5	10
362	Alkyl side chain engineering enables high performance as-cast organic solar cells of over 17% efficiency. Fundamental Research, 2023, 3, 611-617.	3.3	10
363	Symmetrically Fluorinated Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene-Cored Donor for High-Performance All-Small-Molecule Organic Solar Cells with Improved Active Layer Morphology and Crystallinity. ACS Applied Materials & Interfaces, 2022, 14, 14532-14540.	8.0	10
364	Selective doping of a single ambipolar organic semiconductor to obtain P- and N-type semiconductors. Matter, 2022, 5, 2882-2897.	10.0	10
365	Pairing 1D/2D-conjugation donors/acceptors towards high-performance organic solar cells. Materials Chemistry Frontiers, 2019, 3, 276-283.	5.9	9
366	Effects of π-Bridge on Fused-Ring Electron Acceptor Dimers. ACS Applied Polymer Materials, 2021, 3, 23-29.	4.4	9
367	Effects of Side Chains in Third Components on the Performance of Fused-Ring Electron-Acceptor-Based Ternary Organic Solar Cells. Energy & Fuels, 2021, 35, 19055-19060.	5.1	9
368	Understanding the molecular mechanisms of the differences in the efficiency and stability of all-polymer solar cells. Journal of Materials Chemistry C, 2022, 10, 1850-1861.	5.5	9
369	Revealing the Sole Impact of Acceptor's Molecular Conformation to Energy Loss and Device Performance of Organic Solar Cells through Positional Isomers. Advanced Science, 2022, 9, e2103428.	11.2	9
370	Naphthalenediimide-based n-type polymer acceptors with pendant twisted perylenediimide units for all-polymer solar cells. Polymer, 2018, 158, 183-189.	3.8	8
371	Effects of Fluorination Position on Fusedâ€Ring Electron Acceptors. Small Structures, 2020, 1, 2000006.	12.0	8
372	Effects of alkoxylation position on fused-ring electron acceptors. Journal of Materials Chemistry C, 2020, 8, 15128-15134.	5.5	8
373	Effects of linking units on fused-ring electron acceptor dimers. Journal of Materials Chemistry A, 2020, 8, 13735-13741.	10.3	8
374	Resolution-matched reflection mode photoacoustic microscopy and optical coherence tomography dual modality system. Photoacoustics, 2020, 19, 100188.	7.8	8
375	Precise Synthesis of Fused Decacyclic Electron Acceptor Isomers for Organic Solar Cells. Solar Rrl, 2021, 5, 2100163.	5.8	8
376	Nâ€Type Quinoidal Polymers Based on Dipyrrolopyrazinedione for Application in Allâ€Polymer Solar Cells. Chemistry - A European Journal, 2021, 27, 13527-13533.	3.3	8
377	Improving the device performance of organic solar cells with immiscible solid additives. Journal of Materials Chemistry C, 2022, 10, 2749-2756.	5.5	8
378	Confronting the Air Instability of Cesium Tin Halide Perovskites by Metal Ion Incorporation. Journal of Physical Chemistry Letters, 2021, 12, 10996-11004.	4.6	8

#	Article	IF	CITATIONS
379	Unidirectionally aligned bright quantum rods films, using T-shape ligands, for LCD application. Nano Research, 2022, 15, 5392-5401.	10.4	8
380	Sifting α,ï‰-di(thiophen-2-yl)alkanes as solvent additives to boost the photovoltaic performance of the PTB7-Th:PC ₇₁ BM blend. Journal of Materials Chemistry A, 2018, 6, 20788-20794.	10.3	7
381	Spectroscopic Study of Charge Transport at Organic Solid–Water Interface. Chemistry of Materials, 2018, 30, 5422-5428.	6.7	7
382	Oxygen Defect Engineering: Improving the Activity for Oxygen Evolution Reaction by Tailoring Oxygen Defects in Double Perovskite Oxides (Adv. Funct. Mater. 34/2019). Advanced Functional Materials, 2019, 29, 1970236.	14.9	7
383	Energy level modulation of donor–acceptor alternating random conjugated copolymers for achieving high-performance polymer solar cells. Journal of Materials Chemistry C, 2019, 7, 15335-15343.	5.5	7
384	Fused thienobenzene-thienothiophene electron acceptors for organic solar cells. Journal of Energy Chemistry, 2019, 37, 58-65.	12.9	7
385	Various fates of neuronal progenitor cells observed on several different chemical functional groups. Frontiers of Materials Science, 2011, 5, 358-366.	2.2	6
386	X-ray near-field speckle: implementation and critical analysis. Journal of Synchrotron Radiation, 2011, 18, 823-834.	2.4	6
387	Guided Formation of Large Crystals of Organic and Perovskite Semiconductors by an Ultrasonicated Dispenser and Their Application as the Active Matrix of Photodetectors. ACS Applied Materials & Interfaces, 2018, 10, 39921-39932.	8.0	6
388	Visualizing Formation of Intermetallic PdZn in a Palladium/Zinc Oxide Catalyst: Interfacial Fertilization by PdH x. Angewandte Chemie, 2019, 131, 4276-4281.	2.0	6
389	Experimental Observation of Ultrahigh Mobility Anisotropy of Organic Semiconductors in the Two-Dimensional Limit. ACS Applied Electronic Materials, 2020, 2, 2888-2894.	4.3	6
390	Patternâ€Potentialâ€Guided Growth of Textured Macromolecular Films on Graphene/Highâ€Index Copper. Advanced Materials, 2021, 33, e2006836.	21.0	6
391	Suppressed Phase Segregation in Highâ€Humidityâ€Processed Dion–Jacobson Perovskite Solar Cells Toward High Efficiency and Stability. Solar Rrl, 2021, 5, 2100555.	5.8	6
392	Isomeric Effect in Unidirectionally Extended Fused-Ring Electron Acceptors. Chemistry of Materials, 2021, 33, 441-451.	6.7	6
393	In Situ Probing of the Charge Transport Process at the Polymer/Fullerene Heterojunction Interface. Journal of Physical Chemistry C, 2015, 119, 25598-25605.	3.1	5
394	New Route for Fabrication of High-Quality Zn(S,O) Buffer Layer at High Deposition Temperature on Cu(In,Ga)Se\$_2\$ Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 651-655.	2.5	5
395	Perovskite Lightâ€Emitting Diodes: Highâ€Performance Blue Perovskite Lightâ€Emitting Diodes Enabled by Efficient Energy Transfer between Coupled Quasiâ€2D Perovskite Layers (Adv. Mater. 1/2021). Advanced Materials, 2021, 33, 2170006.	21.0	5
396	Boosting charge and thermal transport – role of insulators in stable and efficient n-type polymer transistors. Journal of Materials Chemistry C, 2021, 9, 12281-12290.	5.5	5

#	Article	IF	CITATIONS
397	A new random D-A copolymer based on two different benzotriazole units as co-acceptors for polymer solar cells. Polymer, 2018, 139, 123-129.	3.8	4
398	Superhydrophobic Archwires: Bioinspired Superhydrophobic Ni–Ti Archwires with Resistance to Bacterial Adhesion and Nickel Ion Release (Adv. Mater. Interfaces 7/2019). Advanced Materials Interfaces, 2019, 6, 1970046.	3.7	4
399	Pyrrolo[3,2-b]pyrrole-based fused-ring electron acceptors with strong near-infrared absorption beyond 1000Anm. Dyes and Pigments, 2021, 195, 109705.	3.7	4
400	Cancer Therapy: Multifunctional Carbon-Silica Nanocapsules with Gold Core for Synergistic Photothermal and Chemo-Cancer Therapy under the Guidance of Bimodal Imaging (Adv. Funct. Mater.) Tj ETQq(0 0 04:.g BT	/Oværlock 10
401	Organic Thinâ€Film Transistors: Thiazole Imideâ€Based Allâ€Acceptor Homopolymer: Achieving Highâ€Performance Unipolar Electron Transport in Organic Thinâ€Film Transistors (Adv. Mater. 10/2018). Advanced Materials, 2018, 30, 1870071.	21.0	3
402	Nickel-Catcher-Doped Zwitterionic Hydrogel Coating on Nickel–Titanium Alloy Toward Capture and Detection of Nickel Ions. Frontiers in Bioengineering and Biotechnology, 2021, 9, 698745.	4.1	3
403	Effect of Molecular Symmetry on Fusedâ€Ring Electron Acceptors. Solar Rrl, 2022, 6, 2100797.	5.8	3
404	Transforming the molecular orientation of crystalline lamellae by the degree of multi-fluorination within D–A copolymers and its effect on photovoltaic performance. Journal of Materials Chemistry C, 2018, 6, 10513-10523.	5.5	2
405	Highly crystalline acceptor materials based on benzodithiophene with different amount of fluorine substitution on alkoxyphenyl conjugated side chains for organic photovoltaics. Materials Reports Energy, 2021, 1, 100059.	3.2	2
406	Doping and orientation regulation of p-type Cu:CdS1â^'Se /Pt thin film photocathodes for enhanced photoelectrochemical water splitting. Applied Surface Science, 2021, 566, 150723.	6.1	2
407	Improvement in power conversion efficiency of all-polymer solar cells enabled by ultrafast channels for charge dynamics. Materials Today Nano, 2021, 16, 100133.	4.6	2
408	Perfusion microvessel density in the cerebral cortex of septic rats is negatively correlated with endothelial microparticles in circulating plasma. Metabolic Brain Disease, 2021, 36, 1029-1036.	2.9	1
409	Perovskite Ferroelectric Nanoplates Induced a Highly Oriented Growth of P (VDF-TrFE) Films. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2017, 33, 1261-1266.	4.9	1
410	End group engineering enabling organic solar cells with high open-circuit voltage. Journal Physics D: Applied Physics, 2022, 55, 374002.	2.8	1
411	Effects of Thieno[3,2-b]thiophene Number on Narrow-Bandgap Fused-Ring Electron Acceptors. Chinese Journal of Polymer Science (English Edition), 0, , .	3.8	1
412	Nanoparticle suspensions studied by x-ray photon correlation spectroscopy. Materials Research Society Symposia Proceedings, 2007, 1027, 1.	0.1	0
413	Rücktitelbild: Visualizing Formation of Intermetallic PdZn in a Palladium/Zinc Oxide Catalyst: Interfacial Fertilization by PdH _{<i>x</i>} (Angew. Chem. 13/2019). Angewandte Chemie, 2019, 131, 4458-4458.	2.0	0
414	Biosignal-responsive polymer nanorods that specifically recognize hydrogen polysulfide (H ₂ S _n) from reactive sulfur species. Polymer Chemistry, 2020, 11, 2781-2785.	3.9	0

#	Article	IF	CITATIONS
415	Positional isomeric effect of monobrominated ending groups within small molecule acceptors on photovoltaic performance. RSC Advances, 2021, 11, 31992-31999.	3.6	0
416	Additive assisted hot-casting free fabrication of Dion-Jacobson 2D perovskite solar cell with efficiency beyond 16%. , 2020, , .		0