
Juan Carlos Lacal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3309271/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Choline Kinase α Inhibitors MN58b and RSM932A Enhances the Antitumor Response to Cisplatin in Lung Tumor Cells. Pharmaceutics, 2022, 14, 1143.	4.5	0
2	Choline Kinase: An Unexpected Journey for a Precision Medicine Strategy in Human Diseases. Pharmaceutics, 2021, 13, 788.	4.5	11
3	Identification and validation of novel and more effective choline kinase inhibitors against Streptococcus pneumoniae. Scientific Reports, 2020, 10, 15418.	3.3	4
4	Choline Kinase Emerges as a Promising Drug Target in Gram-Positive Bacteria. Frontiers in Microbiology, 2019, 6, 2146.	3.5	10
5	Choline Uptake and Metabolism Modulate Macrophage IL-1Î ² and IL-18 Production. Cell Metabolism, 2019, 29, 1350-1362.e7.	16.2	140
6	A dual choline/phosphocholine colorimetric method for measuring the relative strength of inhibitors of choline kinases of Gram-positive pathogens. Food Science and Applied Biotechnology, 2018, 1, 131.	0.6	3
7	Clinical relevance of the transcriptional signature regulated by CDC42 in colorectal cancer. Oncotarget, 2017, 8, 26755-26770.	1.8	12
8	Choline Kinase Alpha (CHKα) as a Therapeutic Target in Pancreatic Ductal Adenocarcinoma: Expression, Predictive Value, and Sensitivity to Inhibitors. Molecular Cancer Therapeutics, 2016, 15, 323-333.	4.1	25
9	Phospholipid profiling identifies acyl chain elongation as a ubiquitous trait and potential target for the treatment of lung squamous cell carcinoma. Oncotarget, 2016, 7, 12582-12597.	1.8	58
10	GTPase. , 2016, , 1968-1973.		0
11	Choline kinase inhibition in rheumatoid arthritis. Annals of the Rheumatic Diseases, 2015, 74, 1399-1407.	0.9	64
12	Preclinical Characterization of RSM-932A, a Novel Anticancer Drug Targeting the Human Choline Kinase Alpha, an Enzyme Involved in Increased Lipid Metabolism of Cancer Cells. Molecular Cancer Therapeutics, 2015, 14, 31-39.	4.1	53
13	A new family of choline kinase inhibitors with antiproliferative and antitumor activity derived from natural products. Clinical and Translational Oncology, 2015, 17, 74-84.	2.4	14
14	Variants in phospholipid metabolism and upstream regulators and non-small cell lung cancer susceptibility. Clinical and Translational Oncology, 2014, 16, 107-112.	2.4	4
15	Protein chimerism: Novel source of protein diversity in humans adds complexity to bottomâ€up proteomics. Proteomics, 2013, 13, 5-11.	2.2	10
16	Antiplasmodial Activity and Mechanism of Action of RSM-932A, a Promising Synergistic Inhibitor of Plasmodium falciparum Choline Kinase. Antimicrobial Agents and Chemotherapy, 2013, 57, 5878-5888.	3.2	24
17	Choline kinase inhibition induces exacerbated endoplasmic reticulum stress and triggers apoptosis via CHOP in cancer cells. Cell Death and Disease, 2013, 4, e933-e933.	6.3	63
18	Combined 5-FU and ChoKα Inhibitors as a New Alternative Therapy of Colorectal Cancer: Evidence in Human Tumor-Derived Cell Lines and Mouse Xenografts. PLoS ONE, 2013, 8, e64961.	2.5	41

#	Article	IF	CITATIONS
19	Upregulation of Trefoil Factor 3 (TFF3) After Rectal Cancer Chemoradiotherapy Is an Adverse Prognostic Factor and a Potential Therapeutic Target. International Journal of Radiation Oncology Biology Physics, 2012, 84, 1151-1158.	0.8	19
20	Sensitization of (colon) cancer cells to death receptor related therapies. Cancer Biology and Therapy, 2012, 13, 458-466.	3.4	4
21	Involvement of human choline kinase alpha and beta in carcinogenesis: A different role in lipid metabolism and biological functions. Advances in Enzyme Regulation, 2011, 51, 183-194.	2.6	51
22	Human urine proteomics: building a list of human urine cancer biomarkers. Expert Review of Proteomics, 2011, 8, 347-360.	3.0	21
23	Approaches for the study of cancer: towards the integration of genomics, proteomics and metabolomics. Clinical and Translational Oncology, 2011, 13, 617-628.	2.4	31
24	Lights and shadows of proteomic technologies for the study of protein species including isoforms, splicing variants and protein postâ€translational modifications. Proteomics, 2011, 11, 590-603.	2.2	19
25	GTPase. , 2011, , 1609-1613.		2
26	The Phosphoinositide 3-Kinase Inhibitor PI-103 Downregulates Choline Kinase α Leading to Phosphocholine and Total Choline Decrease Detected by Magnetic Resonance Spectroscopy. Cancer Research, 2010, 70, 5507-5517.	0.9	58
27	New Editorial Board for Clinical and Translational Oncology. Clinical and Translational Oncology, 2009, 11, 1-1.	2.4	2
28	A critical role for choline kinase-α in the aggressiveness of bladder carcinomas. Oncogene, 2009, 28, 2425-2435.	5.9	55
29	TWIST1 Overexpression is Associated with Nodal Invasion and Male Sex in Primary Colorectal Cancer. Annals of Surgical Oncology, 2009, 16, 78-87.	1.5	68
30	Regulation of Akt(ser473) phosphorylation by Choline kinase in breast carcinoma cells. Molecular Cancer, 2009, 8, 131.	19.2	58
31	Differential Role of Human Choline Kinase α and β Enzymes in Lipid Metabolism: Implications in Cancer Onset and Treatment. PLoS ONE, 2009, 4, e7819.	2.5	88
32	FESEO and Clinical & Translational Oncology: a brief historical perspective. Clinical and Translational Oncology, 2008, 10, 683-684.	2.4	0
33	Clinical and Translational Oncology accepted in SciSearch® and Journal Citation Reports. Clinical and Translational Oncology, 2008, 10, 773-773.	2.4	0
34	Choline kinase as a link connecting phospholipid metabolism and cell cycle regulation: Implications in cancer therapy. International Journal of Biochemistry and Cell Biology, 2008, 40, 1753-1763.	2.8	74
35	A Critical Role for Rac1 in Tumor Progression of Human Colorectal Adenocarcinoma Cells. American Journal of Pathology, 2008, 172, 156-166.	3.8	52
36	Choline Kinase Alpha Depletion Selectively Kills Tumoral Cells. Current Cancer Drug Targets, 2008, 8, 709-719.	1.6	52

#	Article	IF	CITATIONS
37	Cdc42 is highly expressed in colorectal adenocarcinoma and downregulates ID4 through an epigenetic mechanism. International Journal of Oncology, 2008, 33, 185-93.	3.3	49
38	Differential expression of Rac1 identifies its target genes and its contribution to progression of colorectal cancer. International Journal of Biochemistry and Cell Biology, 2007, 39, 2289-2302.	2.8	27
39	Orthotopic Microinjection of Human Colon Cancer Cells in Nude Mice Induces Tumor Foci in All Clinically Relevant Metastatic Sites. American Journal of Pathology, 2007, 170, 1077-1085.	3.8	140
40	Expression of choline kinase alpha to predict outcome in patients with early-stage non-small-cell lung cancer: a retrospective study. Lancet Oncology, The, 2007, 8, 889-897.	10.7	140
41	Changing the course of oncogenesis: The development of tyrosine kinase inhibitors. European Journal of Cancer, Supplement, 2006, 4, 14-20.	2.2	3
42	It is about time that spain launches a National Cancer Act?. Clinical and Translational Oncology, 2006, 8, 841-842.	2.4	0
43	Bad patients meet good drugs. Clinical and Translational Oncology, 2006, 8, 225-227.	2.4	1
44	Noninvasive Magnetic Resonance Spectroscopic Pharmacodynamic Markers of the Choline Kinase Inhibitor MN58b in Human Carcinoma Models. Cancer Research, 2006, 66, 427-434.	0.9	135
45	18 F-Choline Images Murine Atherosclerotic Plaques Ex Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 584-589.	2.4	111
46	Generation and characterization of monoclonal antibodies against choline kinase alpha and their potential use as diagnostic tools in cancer. International Journal of Oncology, 2006, 29, 335-40.	3.3	6
47	Rho GTPase expression in tumourigenesis: Evidence for a significant link. BioEssays, 2005, 27, 602-613.	2.5	211
48	Choline Kinase Is a Novel Oncogene that Potentiates RhoA-Induced Carcinogenesis. Cancer Research, 2005, 65, 5647-5653.	0.9	77
49	Symmetrical Bis-Quinolinium Compounds:Â New Human Choline Kinase Inhibitors with Antiproliferative Activity against the HT-29 Cell Line. Journal of Medicinal Chemistry, 2005, 48, 3354-3363.	6.4	53
50	Inhibition of choline kinase renders a highly selective cytotoxic effect in tumour cells through a mitochondrial independent mechanism. International Journal of Oncology, 2005, 26, 999-1008.	3.3	14
51	Choline Kinase Activation Is a Critical Requirement for the Proliferation of Primary Human Mammary Epithelial Cells and Breast Tumor Progression. Cancer Research, 2004, 64, 6732-6739.	0.9	118
52	Choline kinase inhibition induces the increase in ceramides resulting in a highly specific and selective cytotoxic antitumoral strategy as a potential mechanism of action. Oncogene, 2004, 23, 8247-8259.	5.9	81
53	Rho GTPases in human cancer: an unresolved link to upstream and downstream transcriptional regulation. Biochimica Et Biophysica Acta: Reviews on Cancer, 2004, 1705, 121-132.	7.4	82
54	New Analogues of Amonafide and Elinafide, Containing Aromatic Heterocycles:Â Synthesis, Antitumor Activity, Molecular Modeling, and DNA Binding Properties. Journal of Medicinal Chemistry, 2004, 47, 1391-1399.	6.4	116

#	Article	IF	CITATIONS
55	Influence of the Linker in Bispyridium Compounds on the Inhibition of Human Choline Kinase. Journal of Medicinal Chemistry, 2004, 47, 5433-5440.	6.4	29
56	From Ras signalling to ChoK inhibitors: a further advance in anticancer drug design. Cancer Letters, 2004, 206, 137-148.	7.2	36
57	Rho GTPases: potential candidates for anticancer therapy. Cancer Letters, 2004, 206, 181-191.	7.2	106
58	Anticancer research: a few hints for discovery of new targets. Cancer Letters, 2004, 206, 125-127.	7.2	0
59	Choline kinase inhibitory effect and antiproliferative activity of new 1,1′,1″-(benzene-1,3,5-triylmethylene)tris?4-[(disubstituted)amino]pyridinium? tribromides. European Journal of Medicinal Chemistry, 2003, 38, 109-116.	5.5	22
60	Inhibition of choline kinase as a specific cytotoxic strategy in oncogene-transformed cells. Oncogene, 2003, 22, 8803-8812.	5.9	81
61	ROCK and Nuclear Factor-κB–dependent Activation of Cyclooxygenase-2 by Rho GTPases: Effects on Tumor Growth and Therapeutic Consequences. Molecular Biology of the Cell, 2003, 14, 3041-3054.	2.1	76
62	STAT5a Activation Mediates the Epithelial to Mesenchymal Transition Induced by Oncogenic RhoA Molecular Biology of the Cell, 2003, 14, 40-53.	2.1	39
63	QSAR-Derived Choline Kinase Inhibitors: How Rational can Antiproliferative Drug Design Be?. Current Medicinal Chemistry, 2003, 10, 1095-1112.	2.4	31
64	Rho GTPases in human carcinogenesis: a tale of excess. , 2003, 5, 70-78.		7
65	Phospholipase D and choline kinase: their role in cancer development and their potential as drug targets. Progress in Cell Cycle Research, 2003, 5, 191-201.	0.9	14
66	Cell Stress and MEKK1-mediated c-Jun Activation Modulate NFκB Activity and Cell Viability. Molecular Biology of the Cell, 2002, 13, 2933-2945.	2.1	92
67	Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers. Biochemical and Biophysical Research Communications, 2002, 296, 580-583.	2.1	326
68	Regulation of choline kinase activity by Ras proteins involves Ral–GDS and PI3K. Oncogene, 2002, 21, 937-946.	5.9	114
69	Increased choline kinase activity in human breast carcinomas: clinical evidence for a potential novel antitumor strategy. Oncogene, 2002, 21, 4317-4322.	5.9	232
70	Quantitative structure–activity relationships for a series of symmetrical bisquaternary anticancer compounds. Bioorganic and Medicinal Chemistry, 2002, 10, 2215-2231.	3.0	34
71	Inhibition of ChoK Is an Efficient Antitumor Strategy for Harvey-, Kirsten-, and N-ras-Transformed Cells. Biochemical and Biophysical Research Communications, 2001, 285, 873-879.	2.1	42
72	Rho signals to cell growth and apoptosis. Cancer Letters, 2001, 165, 1-10.	7.2	288

17

#	Article	IF	CITATIONS
73	LUMO energy of model compounds of bispyridinium compounds as an index for the inhibition of choline kinase. European Journal of Medicinal Chemistry, 2001, 36, 215-225.	5.5	34
74	Modulation of phospholipase D by hexadecylphosphorylcholine: a putative novel mechanism for its antitumoral activity. Oncogene, 2001, 20, 1110-1117.	5.9	44
75	Searching new targets for anticancer drug design: The families of Ras and Rho GTPases and their effectors. Progress in Molecular Biology and Translational Science, 2001, 67, 193-234.	1.9	36
76	Simultaneous Tyrosine and Serine Phosphorylation of STAT3 Transcription Factor Is Involved in Rho A GTPase Oncogenic Transformation. Molecular Biology of the Cell, 2001, 12, 3282-3294.	2.1	101
77	Ras protein is involved in the physiological regulation of phospholipase D by platelet derived growth factor. Oncogene, 2000, 19, 431-437.	5.9	21
78	Apoptosis Induced by Rac GTPase Correlates with Induction of FasL and Ceramides Production. Molecular Biology of the Cell, 2000, 11, 4347-4358.	2.1	69
79	Activation of Serum Response Factor by RhoA Is Mediated by the Nuclear Factor-κB and C/EBP Transcription Factors. Journal of Biological Chemistry, 1999, 274, 8506-8515.	3.4	80
80	Rho proteins in the regulation of apoptosis. Biology of the Cell, 1999, 91, 549-550.	2.0	1
81	Rho-regulated signals induce apoptosis in vitro and in vivo by a p53-independent, but Bcl2 dependent pathway. Oncogene, 1998, 17, 1855-1869.	5.9	92
82	Wortmannin, an inhibitor of phosphatidyl-inositol 3-kinase, induces oocyte maturation through a MPF-MAPK-dependent pathway. FEBS Letters, 1998, 422, 155-159.	2.8	18
83	Multiple Signalling Pathways Lead to the Activation of the Nuclear Factor ΰB by the Rho Family of GTPases. Journal of Biological Chemistry, 1998, 273, 12779-12785.	3.4	208
84	Signaling from G Protein-coupled Receptors to the c-jun Promoter Involves the MEF2 Transcription Factor. Journal of Biological Chemistry, 1997, 272, 20691-20697.	3.4	50
85	Activation of phospholipase D by growth factors and oncogenes in murine fibroblasts follow alternative but cross-talking pathways. Biochemical Journal, 1997, 322, 519-528.	3.7	26
86	Regulation of proliferation and apoptosis by Ras and Rho GTPases through specific phospholipid-dependent signaling. FEBS Letters, 1997, 410, 73-77.	2.8	58
87	Micro-injection of recombinant lysyl oxidase blocks oncogenic p21-Ha-Ras and progesterone effects onXenopus laevisoocyte maturation. FEBS Letters, 1997, 419, 63-68.	2.8	45
88	Choline kinase inhibitors as a novel approach for antiproliferative drug design. Oncogene, 1997, 15, 2289-2301.	5.9	155
89	Rho proteins induce metastatic properties in vivo. Oncogene, 1997, 15, 3047-3057.	5.9	153

Activation of phospholipase D by ras proteins is independent of protein kinase C. , 1996, 61, 599-608.

#	Article	IF	CITATIONS
91	Generation of phosphorylcholine as an essential event in the activation of Raf-1 and MAP-kinases in growth factors-induced mitogenic stimulation. Journal of Cellular Biochemistry, 1995, 57, 141-149.	2.6	89
92	Modulation of cellular chemoresistance in keratinocytes by activation of different oncogenes. International Journal of Cancer, 1995, 60, 235-243.	5.1	26
93	ras-p21 Activates phospholipase D and A2, but not phospholipase C or PKC, inXenopus laevis Oocytes. Journal of Cellular Biochemistry, 1994, 54, 478-486.	2.6	33
94	Progesterone but notras requires MPF for in vivo activation of MAPK and S6 KII: MAPK is an essential conexion point of both signaling pathways. Journal of Cellular Biochemistry, 1994, 55, 465-476.	2.6	19
95	Phospholipase-induced maturation ofXenopus laevis oocytes: Mitogenic activity of generated metabolites. Journal of Cellular Biochemistry, 1993, 52, 440-448.	2.6	30
96	Acylphosphatase synergizes with progesterone during maturation ofXenopus laevisoocytes. FEBS Letters, 1993, 327, 265-270.	2.8	6
97	Localization of rap1 and rap2 proteins in the gelatinase-containing granules of human neutrophils. FEBS Letters, 1993, 326, 209-214.	2.8	28
98	Microinjection of acylphosphatase blocksXenopus laevisoocytes maturation induced byras-p21. FEBS Letters, 1993, 326, 167-170.	2.8	7
99	Biological Function of Aplysia californica rho Gene. , 1991, , 237-242.		3
100	Differential effects of phorbol ester on the in vitro invasiveness of malignant and non-malignant human fibroblast cells. Journal of Cellular Physiology, 1990, 142, 55-60.	4.1	30
101	Agonist-induced phosphorylation of an immunologically ras-related protein in human erythroleukemia cells. Biochemical and Biophysical Research Communications, 1989, 161, 972-978.	2.1	23
102	Identification of rho as a substrate for botulinum toxin C3 -catalyzed ADP-ribosylation. FEBS Letters, 1989, 247, 221-226.	2.8	37
103	Analysis of the Biochemical and Biological Activities of Deletion Mutants of the H-Ras P21 Protein Suggest That Gap is an Essential Component of Its Effector Function. , 1989, , 179-190.		0
104	Ras Proteins as Potential Activators of Protein Kinase C Function. , 1989, , 105-118.		0
105	Conformational alterations detected by circular dichroism induced in the normal ras p21 protein by activating point mutations at position 12, 59, or 61. FEBS Journal, 1988, 174, 621-627.	0.2	10
106	Rapid Stimulation of Diacylglycerol Production in Xenopus Oocytes by Microinjection of H-ras p21. Obstetrical and Gynecological Survey, 1988, 43, 417.	0.4	0
107	Analysis of the rasH oncogene and its p21 product in chemically induced skin tumors and tumor-derived cell lines. Carcinogenesis, 1987, 8, 1821-1825.	2.8	32
108	Phosphorylation of ras oncogene product by protein kinase C. Biochemical and Biophysical Research Communications, 1987, 145, 782-788.	2.1	46

#	Article	IF	CITATIONS
109	Novel source of 1,2-diacylglycerol elevated in cells transformed by Ha-ras oncogene. Nature, 1987, 330, 269-272.	27.8	312
110	Ras p21 proteins with high or low GTPase activity can efficiently transform NIH3T3 cells. Cell, 1986, 44, 609-617.	28.9	128
111	Loss of mouse fibroblast cell response to phorbol esters restored by microinjected protein kinase C. Nature, 1986, 324, 375-377.	27.8	55
112	Screening for new compounds with antiherpes activity. Antiviral Research, 1984, 4, 231-244.	4.1	41
113	Permeabilization of cells during animal virus infection. , 1983, 23, 109-145.		35
114	Relationship between Membrane Integrity and the Inhibition of Host Translation in Virus-Infected Mammalian Cells. Comparative Studies between Encephalomyocarditis Virus and Poliovirus. FEBS Journal, 1982, 127, 359-366.	0.2	45
115	Antibiotics that specifically block translation in virus-infected cells Journal of Antibiotics, 1980, 33, 441-446.	2.0	39
116	Biological Methods for Metabolic Research. , 0, , 54-76.		0
117	Regulation of choline kinase activity by Ras proteins involves Ral–GDS and PI3K. , 0, .		1