Susanne Kossatz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3309225/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Research, 2015, 17, 66.	5.0	231
2	Inhibiting Inflammation with Myeloid Cell-Specific Nanobiologics Promotes Organ Transplant Acceptance. Immunity, 2018, 49, 819-828.e6.	14.3	161
3	High Therapeutic Efficiency of Magnetic Hyperthermia in Xenograft Models Achieved with Moderate Temperature Dosages in the Tumor Area. Pharmaceutical Research, 2014, 31, 3274-3288.	3.5	122
4	RGD-Binding Integrins Revisited: How Recently Discovered Functions and Novel Synthetic Ligands (Re-)Shape an Ever-Evolving Field. Cancers, 2021, 13, 1711.	3.7	92
5	Target engagement imaging of PARP inhibitors in small-cell lung cancer. Nature Communications, 2018, 9, 176.	12.8	75
6	Molecular Imaging of PARP. Journal of Nuclear Medicine, 2017, 58, 1025-1030.	5.0	75
7	Non-invasive PET Imaging of PARP1 Expression in Glioblastoma Models. Molecular Imaging and Biology, 2016, 18, 386-392.	2.6	70
8	Targeted Brain Tumor Radiotherapy Using an Auger Emitter. Clinical Cancer Research, 2020, 26, 2871-2881.	7.0	69
9	Dual-Modality Optical/PET Imaging of PARP1 in Glioblastoma. Molecular Imaging and Biology, 2015, 17, 848-855.	2.6	66
10	Detection and delineation of oral cancer with a PARP1 targeted optical imaging agent. Scientific Reports, 2016, 6, 21371.	3.3	58
11	PARP-1–Targeted Radiotherapy in Mouse Models of Glioblastoma. Journal of Nuclear Medicine, 2018, 59, 1225-1233.	5.0	51
12	Optical Imaging Modalities: Principles and Applications in Preclinical Research and Clinical Settings. Journal of Nuclear Medicine, 2020, 61, 1419-1427.	5.0	49
13	Radioiodinated PARP1 tracers for glioblastoma imaging. EJNMMI Research, 2015, 5, 123.	2.5	48
14	Prospective Study of the Radiolabeled GRPR Antagonist BAY86-7548 for Positron Emission Tomography/Computed Tomography Imaging of Newly Diagnosed Prostate Cancer. European Urology Oncology, 2019, 2, 166-173.	5.4	47
15	Validation of the use of a fluorescent PARP1 inhibitor for the detection of oral, oropharyngeal and oesophageal epithelial cancers. Nature Biomedical Engineering, 2020, 4, 272-285.	22.5	43
16	Synthesis of a Fluorescently Labeled ⁶⁸ Ga-DOTA-TOC Analog for Somatostatin Receptor Targeting. ACS Medicinal Chemistry Letters, 2017, 8, 720-725.	2.8	30
17	Targeted PET imaging strategy to differentiate malignant from inflamed lymph nodes in diffuse large B-cell lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7441-E7449.	7.1	28
18	Biomarker-Based PET Imaging of Diffuse Intrinsic Pontine Glioma in Mouse Models. Cancer Research, 2017, 77, 2112-2123.	0.9	27

SUSANNE KOSSATZ

#	Article	IF	CITATIONS
19	Optical Imaging of PARP1 in Response to Radiation in Oral Squamous Cell Carcinoma. PLoS ONE, 2016, 11, e0147752.	2.5	26
20	An ⁸⁹ Zr-HDL PET Tracer Monitors Response to a CSF1R Inhibitor. Journal of Nuclear Medicine, 2020, 61, 433-436.	5.0	25
21	PET/CT imaging of head-and-neck and pancreatic cancer in humans by targeting the "Cancer Integrinâ€ıî±vî²6 with Ga-68-Trivehexin. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 1136-1147.	6.4	25
22	Specific Targeting of Somatostatin Receptor Subtype-2 for Fluorescence-Guided Surgery. Clinical Cancer Research, 2019, 25, 4332-4342.	7.0	24
23	Advancements in PARP1 Targeted Nuclear Imaging and Theranostic Probes. Journal of Clinical Medicine, 2020, 9, 2130.	2.4	24
24	Multifactorial diagnostic NIR imaging of CCK2R expressing tumors. Biomaterials, 2013, 34, 5172-5180.	11.4	21
25	Current Practice and Emerging Molecular Imaging Technologies in Oral Cancer Screening. Molecular Imaging, 2018, 17, 153601211880864.	1.4	21
26	A phase I study of a PARP1-targeted topical fluorophore for the detection of oral cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 3618-3630.	6.4	21
27	Fluorescence Imaging of Peripheral Nerves by a Na _v 1.7-Targeted Inhibitor Cystine Knot Peptide. Bioconjugate Chemistry, 2019, 30, 2879-2888.	3.6	20
28	Clickâ€Chemistry (CuAAC) Trimerization of an α _v β ₆ Integrin Targeting Gaâ€68â€Peptide: Enhanced Contrast for inâ€Vivo PET Imaging of Human Lung Adenocarcinoma Xenografts. ChemBioChem, 2020, 21, 2836-2843.	2.6	20
29	Detection and Delineation of Oral Cancer With a PARP1-Targeted Optical Imaging Agent. Molecular Imaging, 2017, 16, 153601211772378.	1.4	16
30	Discriminating radiation injury from recurrent tumor with [18F]PARPi and amino acid PET in mouse models. EJNMMI Research, 2018, 8, 59.	2.5	16
31	Acid specific dark quencher QC1 pHLIP for multi-spectral optoacoustic diagnoses of breast cancer. Scientific Reports, 2019, 9, 8550.	3.3	16
32	Nanoemulsion-Based Delivery of Fluorescent PARP Inhibitors in Mouse Models of Small Cell Lung Cancer. Bioconjugate Chemistry, 2018, 29, 3776-3782.	3.6	15
33	Fluorescence-guided resection of tumors in mouse models of oral cancer. Scientific Reports, 2020, 10, 11175.	3.3	15
34	Selective imaging of chronic cardiac rejection using a human antibody specific to the alternatively spliced EDA domain of fibronectin. Journal of Heart and Lung Transplantation, 2013, 32, 641-650.	0.6	14
35	Positron-Emission Tomographic Imaging of a Fluorine 18–Radiolabeled Poly(ADP-Ribose) Polymerase 1 Inhibitor Monitors the Therapeutic Efficacy of Talazoparib in SCLC Patient–Derived Xenografts. Journal of Thoracic Oncology, 2019, 14, 1743-1752.	1.1	14
36	Preclinical and first-in-human-brain-cancer applications of [18F]poly (ADP-ribose) polymerase inhibitor PET/MR. Neuro-Oncology Advances, 2020, 2, vdaa119.	0.7	14

SUSANNE KOSSATZ

#	Article	IF	CITATIONS
37	The organometallic ferrocene exhibits amplified anti-tumor activity by targeted delivery via highly selective ligands to αvβ3, αvβ6, or α5β1 integrins. Biomaterials, 2021, 271, 120754.	11.4	14
38	There is a world beyond αvβ3-integrin: Multimeric ligands for imaging of the integrin subtypes αvβ6, αvβ8, αv and α5β1 by positron emission tomography. EJNMMI Research, 2021, 11, 106.	^{ĵ2} 3, 2.5	14
39	Direct Imaging of Drug Distribution and Target Engagement of the PARP Inhibitor Rucaparib. Journal of Nuclear Medicine, 2018, 59, 1316-1320.	5.0	13
40	Optical Imaging of CCK2/Gastrin Receptor-Positive Tumors With a Minigastrin Near-Infrared Probe. Investigative Radiology, 2011, 46, 196-201.	6.2	12
41	Fluorine-18 labeled poly (ADP-ribose) polymerase1 inhibitor as a potential alternative to 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography in oral cancer imaging. Nuclear Medicine and Biology, 2020, 84-85, 80-87.	0.6	12
42	cis-Tetrachlorido-bis(indazole)osmium(iv) and its osmium(iii) analogues: paving the way towards the cis-isomer of the ruthenium anticancer drugs KP1019 and/or NKP1339. Dalton Transactions, 2017, 46, 11925-11941.	3.3	11
43	Inhibition of Microtubule Dynamics in Cancer Cells by Indole-Modified Latonduine Derivatives and Their Metal Complexes. Inorganic Chemistry, 2022, 61, 1456-1470.	4.0	8
44	DNA Repair Enzyme Poly(ADP-Ribose) Polymerase 1/2 (PARP1/2)-Targeted Nuclear Imaging and Radiotherapy. Cancers, 2022, 14, 1129.	3.7	7
45	It's Time to Shift the Paradigm: Translation and Clinical Application of Non-αvβ3 Integrin Targeting Radiopharmaceuticals. Cancers, 2021, 13, 5958.	3.7	6
46	Influence of d-glutamine and d-glutamic acid sequences in optical peptide probes targeted against the cholecystokinin-2/gastrin-receptor on binding affinity, specificity and pharmacokinetic properties. EJNMMI Research, 2013, 3, 75.	2.5	5
47	Combined PARP1-targeted nuclear contrast and reflectance contrast enhances confocal microscopic detection of basal cell carcinoma. Journal of Nuclear Medicine, 2021, , jnumed.121.262600.	5.0	5
48	Identification of adeno-associated virus variants for gene transfer into human neural cell types by parallel capsid screening. Scientific Reports, 2022, 12, 8356.	3.3	5
49	Poly(ADP-ribose)polymerase1: A potential molecular marker to identify cancer during colposcopy procedures Journal of Nuclear Medicine, 2020, 62, jnumed.120.253575.	5.0	3
50	Photopharmacology and Photochemical Biology. ChemPhotoChem, 2021, 5, 1031-1032.	3.0	3
51	NIR Fluorescence Imaging of Colon Cancer with cRGD-ZW800-1—Letter. Clinical Cancer Research, 2021, 27, 4937-4937.	7.0	2
52	Combining PARPi-FL fluorescence and reflectance contrast for improved detection of basal cell carcinoma (BCC). , 2021, , .		0