
Patterson Souza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3308961/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	"Green―colloidal ZnS quantum dots/chitosan nano-photocatalysts for advanced oxidation processes: Study of the photodegradation of organic dye pollutants. Applied Catalysis B: Environmental, 2014, 158-159, 269-279.	20.2	143
2	Nanostructured δ-FeOOH: An efficient Fenton-like catalyst for the oxidation of organics in water. Applied Catalysis B: Environmental, 2012, 119-120, 175-182.	20.2	126
3	Comprehensive two-dimensional gas chromatography for fingerprint pattern recognition in cachaça production. Talanta, 2008, 74, 793-799.	5.5	72
4	Increasing the elongation at break of polyhydroxybutyrate biopolymer: Effect of cellulose nanowhiskers on mechanical and thermal properties. Journal of Applied Polymer Science, 2013, 127, 3613-3621.	2.6	71
5	Modified niobia as a bifunctional catalyst for simultaneous dehydration and oxidation of glycerol. Applied Catalysis B: Environmental, 2012, 117-118, 29-35.	20.2	60
6	Determination of volatile compounds in Brazilian distilled cachaça by using comprehensive two-dimensional gas chromatography and effects of production pathways. Journal of Chromatography A, 2009, 1216, 2881-2890.	3.7	47
7	Electrospray Ionization Mass Spectrometry Fingerprinting of Brazilian Artisan Cachaça Aged in Different Wood Casks. Journal of Agricultural and Food Chemistry, 2007, 55, 2094-2102.	5.2	45
8	Nanostructured vanadium-doped iron oxide: catalytic oxidation of methylene blue dye. New Journal of Chemistry, 2015, 39, 3051-3058.	2.8	40
9	A pH-triggered bistable copper(ii) metallacycle as a reversible emulsion switch for biphasic processes. Chemical Communications, 2013, 49, 10778.	4.1	38
10	Intensification of UV-C treatment to remove emerging contaminants by UV-C/H2O2 and UV-C/S2O82â^': Susceptibility to photolysis and investigation of acute toxicity. Chemical Engineering Journal, 2019, 376, 120856.	12.7	37
11	Nb-doped hematite: Highly active catalyst for the oxidation of organic dyes in water. Catalysis Today, 2015, 240, 176-181.	4.4	34
12	Electrochemical behavior of polyurethane ether electrolytes/carbon black composites and application to double layer capacitor. Electrochimica Acta, 2001, 46, 1629-1634.	5.2	32
13	Brazilian cacha§a: "Single shot―typification of fresh alembic and industrial samples via electrospray ionization mass spectrometry fingerprinting. Food Chemistry, 2009, 115, 1064-1068.	8.2	32
14	Palladium(II) and platinum(II) oxamate complexes as potential anticancer agents: Structural characterization and cytotoxic activity. Polyhedron, 2014, 76, 16-21.	2.2	30
15	Modified Niobium Oxyhydroxide Catalyst: An Acetalization Reaction to Produce Bioâ€additives for Sustainable Use of Waste Glycerol. ChemCatChem, 2014, 6, 2961-2969.	3.7	29
16	Differentiation of rum and Brazilian artisan cachaça via electrospray ionization mass spectrometry fingerprinting. Journal of Mass Spectrometry, 2007, 42, 1294-1299.	1.6	28
17	Amphiphilic niobium oxyhydroxide as a hybrid catalyst for sulfur removal from fuel in a biphasic system. Applied Catalysis B: Environmental, 2014, 147, 43-48.	20.2	28
18	β-pinene oxidation by hydrogen peroxide catalyzed by modified niobium-MCM. Applied Catalysis A: General, 2012, 419-420, 215-220.	4.3	22

PATTERSON SOUZA

#	Article	IF	CITATIONS
19	Reactive Magnetron Sputter Deposition of Bismuth Tungstate Coatings for Water Treatment Applications under Natural Sunlight. Catalysts, 2017, 7, 283.	3.5	20
20	Metal-free bifunctional silica for conversion of waste glycerol from biodiesel: Sustainable production of formic acid. Chemical Engineering Journal, 2019, 369, 1102-1108.	12.7	20
21	Photocatalytic performance of cementitious materials with addition of red mud and Nb2O5 particles. Construction and Building Materials, 2020, 259, 119851.	7.2	20
22	Conversion of fatty acids into hydrocarbon fuels based on a sodium carboxylate intermediate. Catalysis Today, 2017, 279, 260-266.	4.4	15
23	Nb and V-modified silicate for conversion of glycerol: Comparison between the waste and commercial product. Catalysis Today, 2017, 289, 258-263.	4.4	15
24	V- or Mo-modified niobium catalysts for glycerin conversion reactions in the presence of H2O2. Applied Catalysis A: General, 2012, 443-444, 153-160.	4.3	12
25	Artificially-aged cachaça samples characterised by direct infusion electrospray ionisation mass spectrometry. Food Chemistry, 2014, 143, 77-81.	8.2	11
26	Production of compounds to be used as fuel additive: Glycerol conversion using Nb-doped MgAl mixed oxide. Catalysis Today, 2013, 213, 65-72.	4.4	10
27	Fe/C and FeMo/C hybrid materials for the biphasic oxidation of fuel contaminants. New Journal of Chemistry, 2017, 41, 142-150.	2.8	10
28	Evaluation of properties of polymer concrete based on epoxy resin and functionalized carbon nanotubes. Construction and Building Materials, 2021, 309, 125155.	7.2	8
29	NMR and DSC study of polymer electrolyte–Carbon Black composites. Solid State Ionics, 2000, 136-137, 1181-1187.	2.7	7
30	Cross-linking effect on thermal, conducting and electrochemical properties of an elastomeric polymer electrolyte. Solid State Ionics, 2003, 159, 301-311.	2.7	7
31	An effective approach for modifying carbonaceous materials with niobium single sites to improve their catalytic properties. Dalton Transactions, 2015, 44, 19956-19965.	3.3	7
32	Photoactivation of a biodegradable polymer (PHB): Generation of radicals for pollutants oxidation. Catalysis Today, 2020, 344, 171-175.	4.4	5
33	Monitoring microbiological and physicochemical quality of bottled mineral water sold in Minas Gerais, Brazil. Journal of Water Sanitation and Hygiene for Development, 2014, 4, 538-543.	1.8	4
34	Alcoxycle: A novel route for glycerol reform into H 2 and CO x in separate stages. Catalysis Today, 2017, 289, 127-132.	4.4	4
35	The combined effect between Co and carbon nanostructures grown on cordierite monoliths for the removal of organic contaminants from the liquid phase. New Journal of Chemistry, 2015, 39, 1438-1444.	2.8	3
36	Synthesis of glycerol carbonate over a 2D coordination polymer built with Nd ³⁺ ions and organic ligands. Dalton Transactions, 2018, 47, 10976-10988.	3.3	3

#	Article	IF	CITATIONS
37	Synthetic Niobium Oxyhydroxide as a Bifunctional Catalyst for Production of Ethers and Allyl Alcohol from Waste Glycerol. Journal of the Brazilian Chemical Society, 0, , .	0.6	3
38	Production, Characterization and Use of Sulfonated Polystyrene and Polysulfone Membranes as Catalysts in the Esterification Reaction of Oleic Acid. Revista Virtual De Quimica, 2018, 10, 124-141.	0.4	1