
Nicolas Keller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3308722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2(anatase/rutile) photocatalysts: Influence of noble metal and porogen promotion. Journal of Catalysis, 2010, 269, 179-190.	6.2	289
2	The First Preparation of Silicon Carbide Nanotubes by Shape Memory Synthesis and Their Catalytic Potential. Journal of Catalysis, 2001, 200, 400-410.	6.2	225
3	Ethylene Removal and Fresh Product Storage: A Challenge at the Frontiers of Chemistry. Toward an Approach by Photocatalytic Oxidation. Chemical Reviews, 2013, 113, 5029-5070.	47.7	208
4	Catalysts, mechanisms and industrial processes for the dimethylcarbonate synthesis. Journal of Molecular Catalysis A, 2010, 317, 1-18.	4.8	204
5	TiO ₂ Photocatalysis Damages Lipids and Proteins in Escherichia coli. Applied and Environmental Microbiology, 2014, 80, 2573-2581.	3.1	195
6	Carbon nanofiber supported palladium catalyst for liquid-phase reactions. Journal of Molecular Catalysis A, 2001, 170, 155-163.	4.8	168
7	Oxidative dehydrogenation of ethylbenzene to styrene over ultra-dispersed diamond and onion-like carbon. Carbon, 2007, 45, 2145-2151.	10.3	168
8	Synthesis and catalytic uses of carbon and silicon carbide nanostructures. Catalysis Today, 2002, 76, 11-32.	4.4	138
9	Ru catalysts for levulinic acid hydrogenation with formic acid as a hydrogen source. Green Chemistry, 2016, 18, 2014-2028.	9.0	126
10	Synthesis and characterisation of medium surface area silicon carbide nanotubes. Carbon, 2003, 41, 2131-2139.	10.3	123
11	New catalytic phenomena on nanostructured (fibers and tubes) catalysts. Journal of Catalysis, 2003, 216, 333-342.	6.2	115
12	Large scale synthesis of carbon nanofibers by catalytic decomposition of ethane on nickel nanoclusters decorating carbon nanotubes. Physical Chemistry Chemical Physics, 2002, 4, 514-521.	2.8	106
13	Single-Step Synthesis of SnS ₂ Nanosheet-Decorated TiO ₂ Anatase Nanofibers as Efficient Photocatalysts for the Degradation of Gas-Phase Diethylsulfide. ACS Applied Materials & Interfaces, 2015, 7, 19324-19334.	8.0	105
14	Continuous process for selective oxidation of H2S over SiC-supported iron catalysts into elemental sulfur above its dewpoint. Applied Catalysis A: General, 2001, 217, 205-217.	4.3	87
15	Impact of three different TiO2 morphologies on hydrogen evolution by methanol assisted water splitting: Nanoparticles, nanotubes and aerogels. International Journal of Hydrogen Energy, 2011, 36, 14360-14373.	7.1	84
16	Layerâ€by‣ayer Deposited Titanateâ€Based Nanotubes for Solar Photocatalytic Removal of Chemical Warfare Agents from Textiles. Angewandte Chemie - International Edition, 2009, 48, 161-164.	13.8	80
17	Mesoporous TiO2-based photocatalysts for UV and visible light gas-phase toluene degradation. Thin Solid Films, 2006, 495, 272-279.	1.8	79
18	Chemistry of NO _{<i>x</i>} on TiO ₂ Surfaces Studied by Ambient Pressure XPS: Products, Effect of UV Irradiation, Water, and Coadsorbed K ⁺ . Journal of Physical Chemistry Letters, 2013, 4, 536-541.	4.6	79

#	Article	IF	CITATIONS
19	One step synthesis of niobium doped titania nanotube arrays to form (N,Nb) co-doped TiO ₂ with high visible light photoelectrochemical activity. Journal of Materials Chemistry A, 2013, 1, 2151-2160.	10.3	75
20	Numeration methods for targeting photoactive materials in the UV-A photocatalytic removal of microorganisms. Chemical Society Reviews, 2008, 37, 744.	38.1	72
21	Comparison of Hombikat UV100 and P25 TiO2 performance in gas-phase photocatalytic oxidation reactions. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 250, 58-65.	3.9	69
22	Direct oxidation of H2S into S. New catalysts and processes based on SiC support. Catalysis Today, 1999, 53, 535-542.	4.4	68
23	Ti-substituted LaFeO3 perovskite as photoassisted CWPO catalyst for water treatment. Applied Catalysis B: Environmental, 2019, 248, 120-128.	20.2	66
24	Photo-/thermal synergies in heterogeneous catalysis: Towards low-temperature (solar-driven) processing for sustainable energy and chemicals. Applied Catalysis B: Environmental, 2021, 296, 120320.	20.2	66
25	A parametric study of the UV-A photocatalytic oxidation of H2S over TiO2. Applied Catalysis B: Environmental, 2012, 115-116, 209-218.	20.2	59
26	β-SiC foams as a promising structured photocatalytic support for water and air detoxification. Catalysis Today, 2013, 209, 13-20.	4.4	59
27	Preparation and characterization of SiC microtubes. Applied Catalysis A: General, 1999, 187, 255-268.	4.3	58
28	Carbon nanotubes as nanosized reactor for the selective oxidation of H2S into elemental sulfur. Catalysis Today, 2004, 91-92, 91-97.	4.4	58
29	Biological agent inactivation in a flowing air stream by photocatalysis. Chemical Communications, 2005, , 2918.	4.1	58
30	Gas phase photocatalytic removal of toluene effluents on sulfated titania. Journal of Catalysis, 2005, 235, 318-326.	6.2	57
31	Solar light-activated photocatalytic degradation of gas phase diethylsulfide on WO3-modified TiO2 nanotubes. Applied Catalysis B: Environmental, 2013, 138-139, 128-140.	20.2	54
32	Activity enhancement pathways in LaFeO3@TiO2 heterojunction photocatalysts for visible and solar light driven degradation of myclobutanil pesticide in water. Journal of Hazardous Materials, 2020, 400, 123099.	12.4	53
33	Supported gold–nickel nano-alloy as a highly efficient catalyst in levulinic acid hydrogenation with formic acid as an internal hydrogen source. Catalysis Science and Technology, 2018, 8, 4318-4331.	4.1	51
34	Structural and electronic effects in bimetallic PdPt nanoparticles on TiO2 for improved photocatalytic oxidation of CO in the presence of humidity. Applied Catalysis B: Environmental, 2015, 166-167, 381-392.	20.2	50
35	Selective oxidation of H2S in Claus tail-gas over SiC supported NiS2 catalyst. Catalysis Today, 2000, 61, 157-163.	4.4	49
36	Macroscopic carbon nanofibers for use as photocatalyst support. Catalysis Today, 2005, 101, 323-329.	4.4	47

#	Article	IF	CITATIONS
37	Room temperature visible light oxidation of CO by high surface area rutile TiO2-supported metal photocatalyst. Applied Catalysis B: Environmental, 2007, 69, 133-137.	20.2	47
38	Supported carbon nanofibers for the fixed-bed synthesis of styrene. Carbon, 2006, 44, 809-812.	10.3	46
39	Reaction pathways, kinetics and toxicity assessment during the photocatalytic degradation of glyphosate and myclobutanil pesticides: Influence of the aqueous matrix. Chemical Engineering Journal, 2020, 384, 123315.	12.7	46
40	3D solid carbon foam-based photocatalytic materials for vapor phase flow-through structured photoreactors. Applied Catalysis A: General, 2010, 382, 122-130.	4.3	42
41	Self-decontaminating layer-by-layer functionalized textiles based on WO3-modified titanate nanotubes. Application to the solar photocatalytic removal of chemical warfare agents. Applied Catalysis A: General, 2011, 391, 455-467.	4.3	42
42	Synergy effect between photocatalysis and heterogeneous photo-Fenton catalysis on Ti-doped LaFeO ₃ perovskite for high efficiency light-assisted water treatment. Catalysis Science and Technology, 2020, 10, 1299-1310.	4.1	42
43	UV-A photocatalytic treatment of Legionella pneumophila bacteria contaminated airflows through three-dimensional solid foam structured photocatalytic reactors. Journal of Hazardous Materials, 2010, 175, 372-381.	12.4	41
44	Sn-doped and porogen-modified TiO2 photocatalyst for solar light elimination of sulfure diethyle as a model for chemical warfare agent. Applied Catalysis B: Environmental, 2019, 245, 279-289.	20.2	41
45	Low temperature use of SiC-supported NiS2-based catalysts for selective H2S oxidation. Applied Catalysis A: General, 2002, 234, 191-205.	4.3	40
46	Temperature dependent photoluminescence of anatase and rutile TiO2 single crystals: Polaron and self-trapped exciton formation. Journal of Applied Physics, 2018, 124, .	2.5	39
47	Ferrite Materials for Photoassisted Environmental and Solar Fuels Applications. Topics in Current Chemistry, 2020, 378, 6.	5.8	39
48	TiO2 \hat{I}^2 -SiC foam-structured photoreactor for continuous wastewater treatment. Environmental Science and Pollution Research, 2012, 19, 3727-3734.	5.3	37
49	β-SiC alveolar foams as a structured photocatalytic support for the gas phase photocatalytic degradation of methylethylketone. Applied Catalysis B: Environmental, 2015, 170-171, 301-311.	20.2	36
50	UV-A photocatalytic treatment of high flow rate air contaminated with Legionella pneumophila. Catalysis Today, 2007, 129, 215-222.	4.4	35
51	Heterogeneous photodegradation of Pyrimethanil and its commercial formulation with TiO2 immobilized on SiC foams. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 368, 1-6.	3.9	35
52	Enhanced Production of γâ€Valerolactone with an Internal Source of Hydrogen on Caâ€Modified TiO ₂ Supported Ru Catalysts. ChemSusChem, 2019, 12, 639-650.	6.8	35
53	Beta zeolite supported sol–gel TiO2 materials for gas phase photocatalytic applications. Journal of Hazardous Materials, 2011, 186, 1218-1225.	12.4	32
54	On the modification of photocatalysts for improving visible light and UV degradation of gas-phase toluene over TiO2. Applied Catalysis B: Environmental, 2007, 70, 423-430.	20.2	31

#	Article	IF	CITATIONS
55	Highly robust La1-xTixFeO3 dual catalyst with combined photocatalytic and photo-CWPO activity under visible light for 4-chlorophenol removal in water. Applied Catalysis B: Environmental, 2020, 262, 118310.	20.2	30
56	A new one-dimensional tungsten carbide nanostructured material. Materials Letters, 2006, 60, 1774-1777.	2.6	29
57	H2S photocatalytic oxidation over WO3/TiO2 Hombikat UV100. Environmental Science and Pollution Research, 2014, 21, 3503-3514.	5.3	29
58	Understanding the influence of the composition of the Ag Pd catalysts on the selective formic acid decomposition and subsequent levulinic acid hydrogenation. International Journal of Hydrogen Energy, 2020, 45, 17339-17353.	7.1	29
59	Temperature dependent photoluminescence of photocatalytically active titania nanopowders. Catalysis Today, 2007, 122, 101-108.	4.4	28
60	Cu–Y zeolite supported on silicon carbide for the vapour phase oxidative carbonylation of methanol to dimethyl carbonate. Green Chemistry, 2008, 10, 207-213.	9.0	28
61	Enhanced CO photocatalytic oxidation in the presence of humidity by tuning composition of Pd–Pt bimetallic nanoparticles supported on TiO2. Chemical Communications, 2011, 47, 5331.	4.1	28
62	WO3-modified TiO2 nanotubes for photocatalytic elimination of methylethylketone under UVA and solar light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 245, 43-57.	3.9	28
63	Carbon nanotubes as a template for mild synthesis of magnetic CoFe2O4 nanowires. Carbon, 2004, 42, 1395-1399.	10.3	27
64	Effect of ball-milling and Fe-/Al-doping on the structural aspect and visible light photocatalytic activity of TiO2 towards Escherichia coli bacteria abatement. Materials Science and Engineering C, 2014, 38, 11-19.	7.3	27
65	Ta-doped TiO 2 as photocatalyst for UV-A activated elimination of chemical warfare agent simulant. Journal of Catalysis, 2016, 334, 129-141.	6.2	26
66	Photocatalytic Decontamination of Airborne T2 Bacteriophage Viruses in a Small-Size TiO2/β-SiC Alveolar Foam LED Reactor. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	26
67	High surface area submicrometer-sized β-SiC particles grown by shape memory synthesis method. Diamond and Related Materials, 2005, 14, 1353-1360.	3.9	25
68	Photocatalytic Treatment of Bioaerosols: Impact of the Reactor Design. Environmental Science & Technology, 2010, 44, 2605-2611.	10.0	25
69	Self-tuned properties of CuZnO catalysts for hydroxymethylfurfural hydrodeoxygenation towards dimethylfuran production. Catalysis Science and Technology, 2020, 10, 658-670.	4.1	25
70	Photocatalytic degradation of butanone (methylethylketone) in a small-size TiO2/β-SiC alveolar foam LED reactor. Applied Catalysis B: Environmental, 2014, 154-155, 301-308.	20.2	24
71	Porogen Template Assisted TiO2 Rutile Coupled Nanomaterials for Improved Visible and Solar Light Photocatalytic Applications. Catalysis Letters, 2008, 123, 65-71.	2.6	23
72	Activation and isomerization of hydrocarbons over WO3/ZrO2 catalystsII. Influence of tungsten loading on catalytic activity: Mechanistic studies and correlation with surface reducibility and tungsten surface species. Journal of Catalysis, 2008, 256, 159-171.	6.2	23

#	Article	IF	CITATIONS
73	A new TiO2–β-SiC material for use as photocatalyst. Materials Letters, 2004, 58, 970-974.	2.6	22
74	Antibacterial textiles functionalized by layer-by-layer assembly of polyelectrolytes and TiO2photocatalyst. RSC Advances, 2015, 5, 38859-38867.	3.6	22
75	Synthesis and characterization of a new medium surface area TiO2–β-SiC material for use as photocatalyst. Journal of Materials Chemistry, 2004, 14, 1887-1895.	6.7	21
76	Macronized aligned carbon nanotubes for use as catalyst support and ceramic nanoporous membrane template. Catalysis Today, 2009, 145, 76-84.	4.4	21
77	Monitoring the bactericidal effect of UV-A photocatalysis: A first approach through 1D and 2D protein electrophoresis. Catalysis Today, 2009, 147, 169-172.	4.4	21
78	Wide band gap Ga2O3 as efficient UV-C photocatalyst for gas-phase degradation applications. Environmental Science and Pollution Research, 2017, 24, 26792-26805.	5.3	20
79	Alveolar TiO2-β-SiC photocatalytic composite foams with tunable properties for water treatment. Catalysis Today, 2019, 328, 235-242.	4.4	20
80	Photocatalysis: fundamentals and applications in JEP 2011. Environmental Science and Pollution Research, 2012, 19, 3651-3654.	5.3	19
81	Synthesis of transparent vertically aligned TiO ₂ nanotubes on a few-layer graphene (FLG) film. Chemical Communications, 2012, 48, 1224-1226.	4.1	18
82	TiO2 nanorods for gas phase photocatalytic applications. Catalysis Today, 2014, 235, 193-200.	4.4	17
83	One-pot synthesis of lightly doped Zn1â^'x Cu x O and Au–Zn1â^'x Cu x O with solar light photocatalytic activity in liquid phase. Environmental Science and Pollution Research, 2017, 24, 15622-15633.	5.3	16
84	On the role of BmimPF6 and P/F- containing additives in the sol-gel synthesis of TiO2 photocatalysts with enhanced activity in the gas phase degradation of methyl ethyl ketone. Applied Catalysis B: Environmental, 2018, 234, 56-69.	20.2	16
85	Ti-Modified LaFeO ₃ /β-SiC Alveolar Foams as Immobilized Dual Catalysts with Combined Photo-Fenton and Photocatalytic Activity. ACS Applied Materials & Interfaces, 2020, 12, 57025-57037.	8.0	16
86	Layer-by-Layer Photocatalytic Assembly for Solar Light-Activated Self-Decontaminating Textiles. ACS Applied Materials & Interfaces, 2016, 8, 34438-34445.	8.0	15
87	Photoactive ZnO Materials for Solar Light-Induced CuxO-ZnO Catalyst Preparation. Materials, 2018, 11, 2260.	2.9	15
88	Solvothermal hydrodeoxygenation of hydroxymethylfurfural derived from biomass towards added value chemicals on Ni/TiO2 catalysts. Journal of Supercritical Fluids, 2020, 163, 104827.	3.2	15
89	High-efficiency WO3/carbon nanotubes for olefin skeletal isomerization. Catalysis Today, 2005, 102-103, 94-100.	4.4	14
90	New catalysts based on silicon carbide support for improvements in the sulfur recovery: new silicon carbide nanotubes as catalyst support for the trickle-bed H2S oxidation. Journal of the Brazilian Chemical Society, 2005, 16, 514-519.	0.6	14

#	Article	IF	CITATIONS
91	Ni-Pd/γ-Al2O3 Catalysts in the Hydrogenation of Levulinic Acid and Hydroxymethylfurfural towards Value Added Chemicals. Catalysts, 2020, 10, 1026.	3.5	14
92	Photocatalytically Active Polyelectrolyte/Nanoparticle Films for the Elimination of a Model Odorous Gas. Macromolecular Rapid Communications, 2011, 32, 1145-1149.	3.9	13
93	Highâ€Frequency Stimulation of Normal and Blind Mouse Retinas Using TiO ₂ Nanotubes. Advanced Functional Materials, 2018, 28, 1804639.	14.9	13
94	Light-driven synthesis of sub-nanometric metallic Ru catalysts on TiO2. Catalysis Today, 2019, 326, 8-14.	4.4	13
95	Clinical utility of leflunomide for BK polyomavirus associated nephropathy in kidney transplant recipients: A multicenter retrospective study. Transplant Infectious Disease, 2019, 21, e13058.	1.7	13
96	Coating-free TiO2@ \hat{l}^2 -SiC alveolar foams as a ready-to-use composite photocatalyst with tunable adsorption properties for water treatment. RSC Advances, 2020, 10, 3817-3825.	3.6	13
97	High surface-to-volume hybrid platelet reactor filled with catalytically grown vertically aligned carbon nanotubes. Catalysis Today, 2010, 150, 133-139.	4.4	12
98	On the use of capillary cytometry for assessing the bactericidal effect of TiO2. Identification and involvement of reactive oxygen species. Photochemical and Photobiological Sciences, 2013, 12, 610-620.	2.9	12
99	Environmental photocatalysis and photochemistry for a sustainable world: a big challenge. Environmental Science and Pollution Research, 2017, 24, 12503-12505.	5.3	12
100	Solar Light Induced Photon-Assisted Synthesis of TiO2 Supported Highly Dispersed Ru Nanoparticle Catalysts. Materials, 2018, 11, 2329.	2.9	12
101	Antibacterial and Biofilm-Preventive Photocatalytic Activity and Mechanisms on P/F-Modified TiO2 Coatings. ACS Applied Bio Materials, 2020, 3, 5687-5698.	4.6	12
102	COST Action PRIORITY: An EU Perspective on Micro- and Nanoplastics as Global Issues. Microplastics, 2022, 1, 282-290.	4.2	12
103	Towards the oxygenated phase coverage rate of Î ² -SiC surface. Diamond and Related Materials, 2008, 17, 1867-1870.	3.9	11
104	TiO ₂ supported Ru catalysts for the hydrogenation of succinic acid: influence of the support. Catalysis Science and Technology, 2020, 10, 6860-6869.	4.1	11
105	A tool for direct quantitative measurement of surface BrÃnsted acid sites of solids by H/D exchange using D2O. Applied Catalysis A: General, 2005, 289, 37-43.	4.3	10
106	Sulfate-promoted Titania Photocatalyst for High Efficiency Gas Phase Toluene Degradation. Chemistry Letters, 2005, 34, 336-337.	1.3	8
107	Photocatalytic removal of monoterpenes in the gas phase. Activity and regeneration. Green Chemistry, 2009, 11, 966.	9.0	8
108	UV-A light-assisted gas-phase formic acid decomposition on photo-thermo Ru/TiO2 catalyst. Catalysis Today, 2021, 380, 138-146.	4.4	8

#	ARTICLE	IF	CITATIONS
109	Photocatalytic degradation of polystyrene nanoplastics in water. A methodological study. Journal of Environmental Chemical Engineering, 2022, 10, 108195.	6.7	8
110	Mesostructured Anatase TiO2 for Visible Light and UV Photocatalysis With Confinement Effect and Semiconductor Coupling. Journal of Solar Energy Engineering, Transactions of the ASME, 2008, 130, .	1.8	7
111	Virtually Transparent TiO ₂ /Polyelectrolyte Thin Multilayer Films as High-Efficiency Nanoporous Photocatalytic Coatings for Breaking Down Formic Acid and for <i>Escherichia coli</i> Removal. ACS Applied Materials & Interfaces, 2020, 12, 55766-55781.	8.0	7
112	Ferrite Materials for Photoassisted Environmental and Solar Fuels Applications. Topics in Current Chemistry Collections, 2020, , 107-162.	0.5	7
113	Emerging high-prospect applications in photothermal catalysis. Current Opinion in Green and Sustainable Chemistry, 2022, 37, 100652.	5.9	7
114	Direct quantitative determination of surface BrÃ,nsted acidity of solids by H/D exchange using D2O. Chemical Communications, 2005, , 201-203.	4.1	6
115	Modified-TiO2 Photocatalyst Supported on β-SiC Foams for the Elimination of Gaseous Diethyl Sulfide as an Analog for Chemical Warfare Agent: Towards the Development of a Photoreactor Prototype. Catalysts, 2021, 11, 403.	3.5	5
116	TiO2 and TiO2-Carbon Hybrid Photocatalysts for Diuron Removal from Water. Catalysts, 2021, 11, 457.	3.5	5
117	H/D exchange using D2O on carbon materials: A flexible tool for surface BrÃ,nsted acidity direct measurement. Catalysis Today, 2005, 102-103, 266-272.	4.4	4
118	New catalysts based on silicon carbide support for improvements in the sulfur recovery. Silicon carbide as support for the selective H2S oxidation. Journal of the Brazilian Chemical Society, 2005, 16, .	0.6	3
119	Irradiance-Controlled Photoassisted Synthesis of Sub-Nanometre Sized Ruthenium Nanoparticles as Co-Catalyst for TiO2 in Photocatalytic Reactions. Materials, 2021, 14, 4799.	2.9	1
120	Photocatalytic Degradation of Myclobutanil and Its Commercial Formulation with TiO2 P25 in Slurry and TiO2/β-SiC Foams. Journal of Nanoscience and Nanotechnology, 2020, 20, 5938-5943.	0.9	1
121	CHARACTERIZATION OF POLYBUTYLACRYLATE-B-POLYVINYLPYRIDINE BLOCK COPOLYMERS BY SIZE-EXCLUSION CHROMATOGRAPHY AND DUAL REFRACTIVE INDEX/UV-DETECTION. Journal of Liquid Chromatography and Related Technologies, 2010, 33, 1587-1600.	1.0	0
122	Introduction by guest editors. Photochemical and Photobiological Sciences, 2017, 16, 8-9.	2.9	0
123	Enhanced Production of γâ€Valerolactone with an Internal Source of Hydrogen on Caâ€Modified TiO 2 Supported Ru Catalysts. ChemSusChem, 2019, 12, 553.	6.8	0
124	Highâ€flow arteriovenous fistula and hemodynamic consequences at 1 year after kidney transplantation. Seminars in Dialysis, 2021, , .	1.3	0