
Marco Grande

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3308643/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasmonics on a Neural Implant: Engineering Light–Matter Interactions on the Nonplanar Surface of Tapered Optical Fibers. Advanced Optical Materials, 2022, 10, .	3.6	9
2	Holographic Manipulation of Nanostructured Fiber Optics Enables Spatiallyâ€Resolved, Reconfigurable Optical Control of Plasmonic Local Field Enhancement and SERS. Small, 2022, 18, e2200975.	5.2	3
3	Plasmonic brain implants for the next generation of nano-optical neural interfaces. , 2022, , .		0
4	3D Printed Micro-Cells for Phase Control in 5G mmWave Applications. IEEE Access, 2021, 9, 46049-46060.	2.6	2
5	Multifunctional and reconfigurable graphene/liquid crystal-assisted asymmetrical Fabry-Pérot cavity for reflected light control. Optics Express, 2021, 29, 27816.	1.7	4
6	Rapid Prototyping of Bio-Inspired Dielectric Resonator Antennas for Sub-6 GHz Applications. Micromachines, 2021, 12, 1046.	1.4	5
7	Tuning of Graphene-Based Optical Devices Operating in the Near-Infrared. Applied Sciences (Switzerland), 2021, 11, 8367.	1.3	12
8	Plasmonic Nanostructures on Curved Surfaces for Fiber-Based Sensors. , 2020, , .		1
9	Extraordinary low sheet resistance of CVD graphene by thionyl chloride chemical doping. Carbon, 2020, 170, 75-84.	5.4	32
10	Thermal Tuning of Resonant Gratings Using a Phase-Change Material. , 2020, , .		0
11	Bio-Inspired Dielectric Resonator Antenna for Wideband Sub-6 GHz Range. Applied Sciences (Switzerland), 2020, 10, 8826.	1.3	7
12	Design and Manufacturing of Super-Shaped Dielectric Resonator Antennas for 5G Applications Using Stereolithography. IEEE Access, 2020, 8, 82929-82937.	2.6	22
13	High transmission from 2D periodic plasmonic finite arrays with sub-20 nm gaps realized with Ga focused ion beam milling. Nanotechnology, 2020, 31, 435301.	1.3	11
14	Optical Properties of Finite Subsets of FIB-Milled 2D Periodic Arrays of Gold Nanoplatelets with Sub-20-nm Gaps. , 2020, , .		0
15	Segmented-Wave Analysis of Nano-Gratings on Curved Surfaces. , 2020, , .		Ο
16	Graphene-Based Cylindrical Pillar Gratings for Polarization-Insensitive Optical Absorbers. Applied Sciences (Switzerland), 2019, 9, 2528.	1.3	11
17	2D Dielectric Nanoimprinted PMMA Pillars on Metallo-Dielectric Films. Applied Sciences (Switzerland), 2019, 9, 3812.	1.3	6
18	Gain and phase control in a graphene-loaded reconfigurable antenna. Applied Physics Letters, 2019, 115,	1.5	14

MARCO GRANDE

#	Article	IF	CITATIONS
19	Towards Portable Nanophotonic Sensors. Sensors, 2019, 19, 1715.	2.1	15
20	Reconfigurable and optically transparent microwave absorbers based on deep eutectic solvent-gated graphene. Scientific Reports, 2019, 9, 5463.	1.6	22
21	CMOS Nanophotonic Sensor With Integrated Readout System. IEEE Sensors Journal, 2018, 18, 9188-9194.	2.4	8
22	Amplitude and phase modulation in microwave ring resonators by doped CVD graphene. Nanotechnology, 2018, 29, 325201.	1.3	7
23	Optically transparent wideband CVD graphene-based microwave antennas. Applied Physics Letters, 2018, 112, .	1.5	28
24	Optical trapping in 1D mesoscopic photonic crystal microcavities. , 2018, , .		0
25	1D silicon nitride grating refractive index sensor suitable for integration with CMOS detectors. IEEE Photonics Journal, 2017, , 1-1.	1.0	16
26	Full optical confinement in 1D mesoscopic photonic crystal-based microcavities: an experimental demonstration. Optics Express, 2017, 25, 28288.	1.7	7
27	Optically transparent microwave screens based on engineered graphene layers. Optics Express, 2016, 24, 22788.	1.7	55
28	Tuning Fano resonances of graphene-based gratings. , 2016, , .		0
29	Control of Q-factor in nanobeam cavities on substrate. , 2016, , .		4
30	Tuning infrared guided-mode resonances with graphene. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 426.	0.9	24
31	Control of Fano resonances in graphene-based gratings at telecom wavelengths. , 2016, , .		Ο
32	Optically Transparent Microwave Polarizer Based On Quasi-Metallic Graphene. Scientific Reports, 2015, 5, 17083.	1.6	37
33	Optically transparent graphene-based Salisbury screen microwave absorber. , 2015, , .		3
34	Graphene-based perfect optical absorbers harnessing guided mode resonances. Optics Express, 2015, 23, 21032.	1.7	91
35	Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings. Optics Express, 2014, 22, 31511.	1.7	110
36	Stable planar mesoscopic photonic crystal cavities. Optics Letters, 2014, 39, 4223.	1.7	10

MARCO GRANDE

#	Article	IF	CITATIONS
37	Tailoring Absorption in Metal Gratings with Resonant Ultrathin Bridges. Plasmonics, 2013, 8, 1445-1456.	1.8	6
38	2D plasmonic gold nano-patches for linear and nonlinear applications. Microelectronic Engineering, 2013, 111, 234-237.	1.1	3
39	Asymmetric hybrid double dielectric loaded plasmonic waveguides for sensing applications. Sensors and Actuators B: Chemical, 2013, 186, 148-155.	4.0	16
40	Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect. Optics Letters, 2013, 38, 3550.	1.7	93
41	Emission and Transmission Properties of a Doubly Resonant 3D Nanodisk Yagi–Uda Antenna for Wireless Optical Communications. Plasmonics, 2013, 8, 173-183.	1.8	2
42	Numerical analysis of the coupling mechanism in long-range plasmonic couplers at 155Âμm. Optics Letters, 2013, 38, 46.	1.7	14
43	Gold strip gratings with binary supercell. Optics Letters, 2013, 38, 2904.	1.7	0
44	Fabrication of doubly resonant plasmonic nanopatch arrays on graphene. Applied Physics Letters, 2013, 102, 231111.	1.5	19
45	Photonic band gap active waveguide filters based on dilute nitrides. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 567-572.	0.8	4
46	Novel Plasmonic Bio-Sensing System Based on Two-Dimensional Gold Patch Arrays for Linear and Nonlinear Regimes. Advances in Science and Technology, 2012, 81, 15-19.	0.2	0
47	High-efficient ultra-short vertical long-range plasmonic couplers. Journal of Nanophotonics, 2012, 6, 061609.	0.4	4
48	Localized surface plasmon resonances in gold nano-patches on a gallium nitride substrate. Nanotechnology, 2012, 23, 455709.	1.3	5
49	Color control through plasmonic metal gratings. Applied Physics Letters, 2012, 100, .	1.5	28
50	Experimental surface-enhanced Raman scattering response of two-dimensional finite arrays of gold nanopatches. Applied Physics Letters, 2012, 101, .	1.5	21
51	Plasmonic Bandgaps in 1D Arrays of Slits on Metal Layers Excited by Out-of-Plane Sources. International Journal of Optics, 2012, 2012, 1-12.	0.6	8
52	HIGH-Q PHOTONIC CRYSTAL NANOBEAM CAVITY BASED ON A SILICON NITRIDE MEMBRANE INCORPORATING FABRICATION IMPERFECTIONS AND A LOW-INDEX MATERIAL LAYER. Progress in Electromagnetics Research B, 2012, 37, 191-204.	0.7	4
53	Anomalous plasmonic band gap formation in two-dimensional slit arrays with different periods. , 2011, , , .		1
54	Experimental demonstration of a novel bio‑sensing platform via plasmonic band gap formation in gold nano‑patch arrays. Optics Express, 2011, 19, 21385.	1.7	36

Marco Grande

#	Article	IF	CITATIONS
55	Plasmonic bandgap formation in two-dimensional periodic arrangements of gold patches with subwavelength gaps. Optics Letters, 2011, 36, 903.	1.7	21
56	RESONANCE WAVELENGTH DEPENDENCE AND MODE FORMATION IN GOLD NANOROD OPTICAL ANTENNAS WITH FINITE THICKNESS. Progress in Electromagnetics Research B, 2011, 30, 337-353.	0.7	13
57	Asymmetric plasmonic grating for optical sensing of thin layers of organic materials. Sensors and Actuators B: Chemical, 2011, 160, 1056-1062.	4.0	37
58	Active InGaAsP/InP Photonic Bandgap Waveguides for Wavelength-Selective Switching. IEEE Journal of Quantum Electronics, 2011, 47, 172-181.	1.0	15
59	Enhancement of Extraordinary Optical Transmission in a Double Heterostructure Plasmonic Bandgap Cavity. Plasmonics, 2011, 6, 469-476.	1.8	15
60	Optical filter based on a coupled bilayer photonic crystal. Microelectronic Engineering, 2011, 88, 2771-2774.	1.1	0
61	Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities. Microelectronic Engineering, 2010, 87, 1435-1438.	1.1	23
62	Efficient plasmonic nanostructures for thin film solar cells. , 2010, , .		8
63	Optical filter based on two coupled PhC GaAs-membranes. Optics Letters, 2010, 35, 411.	1.7	27
64	Optical filter with very large stopband (â‰^300 nm) based on a photonic-crystal vertical-directional coupler. Optics Letters, 2009, 34, 3292.	1.7	18
65	Bending Analysis in AlN-Based Multilayered Piezoelectric Cantilevers. Ferroelectrics, 2009, 389, 75-82.	0.3	3
66	Design and modeling of tapered waveguide for photonic crystal slab coupling by using time-domain Hertzian potentials formulation. Optics Express, 2007, 15, 16484.	1.7	8
67	Fabrication of force sensors based on two-dimensional photonic crystal technology. Microelectronic Engineering, 2007, 84, 1450-1453.	1.1	49