Hui Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3308318/publications.pdf

Version: 2024-02-01

88	5,350	39	71
papers	citations	h-index	g-index
92	92	92	6101 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Highly Luminescent Nâ€Doped Carbon Quantum Dots as an Effective Multifunctional Fluorescence Sensing Platform. Chemistry - A European Journal, 2014, 20, 2254-2263.	1.7	407
2	Si-Doped Carbon Quantum Dots: A Facile and General Preparation Strategy, Bioimaging Application, and Multifunctional Sensor. ACS Applied Materials & Samp; Interfaces, 2014, 6, 6797-6805.	4.0	323
3	B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection. Analyst, The, 2014, 139, 2322-2325.	1.7	252
4	A fluorescent nanosensor based on graphene quantum dots–aptamer probe and graphene oxide platform for detection of lead (II) ion. Biosensors and Bioelectronics, 2015, 68, 225-231.	5. 3	248
5	Carbon Quantum Dots-Based Recyclable Real-Time Fluorescence Assay for Alkaline Phosphatase with Adenosine Triphosphate as Substrate. Analytical Chemistry, 2015, 87, 2966-2973.	3.2	201
6	Facile synthesis of P-doped carbon quantum dots with highly efficient photoluminescence. RSC Advances, 2014, 4, 5465.	1.7	190
7	Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: an experimental and theoretical investigation. RSC Advances, 2013, 3, 14571.	1.7	189
8	A real-time fluorescent assay for the detection of alkaline phosphatase activity based on carbon quantum dots. Biosensors and Bioelectronics, 2015, 68, 675-680.	5. 3	189
9	A universal fluorescence sensing strategy based on biocompatible graphene quantum dots and graphene oxide for the detection of DNA. Nanoscale, 2014, 6, 5671-5674.	2.8	163
10	DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes. Biosensors and Bioelectronics, 2014, 60, 64-70.	5.3	150
11	Functionalized Carbon Quantum Dots with Dopamine for Tyrosinase Activity Monitoring and Inhibitor Screening: In Vitro and Intracellular Investigation. ACS Applied Materials & Interfaces, 2015, 7, 23564-23574.	4.0	140
12	Luminescent Nanoswitch Based on Organic-Phase Copper Nanoclusters for Sensitive Detection of Trace Amount of Water in Organic Solvents. Analytical Chemistry, 2016, 88, 7429-7434.	3.2	122
13	Functional Carbon Quantum Dots: A Versatile Platform for Chemosensing and Biosensing. Chemical Record, 2018, 18, 491-505.	2.9	119
14	A fluorometric assay for alkaline phosphatase activity based on \hat{l}^2 -cyclodextrin-modified carbon quantum dots through host-guest recognition. Biosensors and Bioelectronics, 2016, 83, 274-280.	5.3	117
15	Reversible Fluorescent Nanoswitch Based on Carbon Quantum Dots Nanoassembly for Real-Time Acid Phosphatase Activity Monitoring. Analytical Chemistry, 2015, 87, 7332-7339.	3.2	103
16	One-pot green synthesis of highly fluorescent glutathione-stabilized copper nanoclusters for Fe3+ sensing. Sensors and Actuators B: Chemical, 2017, 241, 292-297.	4.0	93
17	Reversible Luminescent Nanoswitches Based on Aggregation-Induced Emission Enhancement of Silver Nanoclusters for Luminescence Turn-on Assay of Inorganic Pyrophosphatase Activity. Analytical Chemistry, 2017, 89, 4994-5002.	3.2	88
18	Fluorometric detection of cholesterol based on \hat{l}^2 -cyclodextrin functionalized carbon quantum dots via competitive host-guest recognition. Talanta, 2017, 167, 513-519.	2.9	86

#	Article	IF	Citations
19	Nitrogen-doped carbon nanotubes functionalized by transition metal atoms: a density functional study. Journal of Materials Chemistry, 2010, 20, 1702.	6.7	82
20	Luminescent Aggregated Copper Nanoclusters Nanoswitch Controlled by Hydrophobic Interaction for Real-Time Monitoring of Acid Phosphatase Activity. Analytical Chemistry, 2016, 88, 11575-11583.	3.2	79
21	A fluorometric biosensor based on functional Au/Ag nanoclusters for real-time monitoring of tyrosinase activity. Biosensors and Bioelectronics, 2016, 86, 542-547.	5.3	74
22	Redox-Controlled Fluorescent Nanoswitch Based on Reversible Disulfide and Its Application in Butyrylcholinesterase Activity Assay. Analytical Chemistry, 2018, 90, 1643-1651.	3.2	74
23	A fluorometric assay for acetylcholinesterase activity and inhibitor screening with carbon quantum dots. Sensors and Actuators B: Chemical, 2016, 222, 879-886.	4.0	73
24	Fabrication of Stable and Luminescent Copper Nanocluster-Based AIE Particles and Their Application in \hat{I}^2 -Galactosidase Activity Assay. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32887-32895.	4.0	64
25	A universal fluorometric assay strategy for glycosidases based on functional carbon quantum dots: \hat{l}^2 -galactosidase activity detection in vitro and in living cells. Journal of Materials Chemistry B, 2017, 5, 1971-1979.	2.9	61
26	Surface molecular imprinting on dye–(NH2)–SiO2 NPs for specific recognition and direct fluorescent quantification of perfluorooctane sulfonate. Sensors and Actuators B: Chemical, 2014, 195, 266-273.	4.0	59
27	A dual-channel fluorescent chemosensor for discriminative detection of glutathione based on functionalized carbon quantum dots. Biosensors and Bioelectronics, 2016, 86, 748-755.	5.3	59
28	Rational Design of Dualâ€State Emission Luminogens with Solvatochromism by Combining a Partially Shared Donor–Acceptor Pattern and Twisted Structures. Chemistry - A European Journal, 2019, 25, 15983-15987.	1.7	56
29	Photochromism and Fluorescence Switch of Furan-Containing Tetraarylethene Luminogens with Aggregation-Induced Emission for Photocontrolled Interface-Involved Applications. ACS Applied Materials & Amp; Interfaces, 2020, 12, 42410-42419.	4.0	56
30	Synthesis of $(\langle i\rangle Z\langle i\rangle)$ -1-Thio- and $(\langle i\rangle Z\langle i\rangle)$ -2-Thio-1-alkenyl Boronates via Copper-Catalyzed Regiodivergent Hydroboration of Thioacetylenes: An Experimental and Theoretical Study. Journal of Organic Chemistry, 2014, 79, 1786-1795.	1.7	55
31	Halogenated tetraphenylethene with enhanced aggregation-induced emission: an anomalous anti-heavy-atom effect and self-reversible mechanochromism. Chemical Communications, 2019, 55, 14938-14941.	2.2	55
32	Cation-driven luminescent self-assembled dots of copper nanoclusters with aggregation-induced emission for \hat{l}^2 -galactosidase activity monitoring. Journal of Materials Chemistry B, 2017, 5, 5120-5127.	2.9	53
33	Nanosized N-doped graphene oxide with visible fluorescence in water for metal ion sensing. Journal of Materials Chemistry, 2011, 21, 17635.	6.7	52
34	Rational design of reversibly photochromic molecules with aggregation-induced emission by introducing photoactive thienyl and benzothienyl groups. Journal of Materials Chemistry C, 2020, 8, 13197-13204.	2.7	51
35	Facile synthesis of halogenated carbon quantum dots as an important intermediate for surface modification. RSC Advances, 2013, 3, 9625.	1.7	50
36	Hydrophobicity-guided self-assembled particles of silver nanoclusters with aggregation-induced emission and their use in sensing and bioimaging. Journal of Materials Chemistry B, 2018, 6, 3927-3933.	2.9	49

#	Article	IF	Citations
37	Ultralong Room-Temperature Phosphorescence from Supramolecular Behavior via Intermolecular Electronic Coupling in Pure Organic Crystals. Journal of Physical Chemistry Letters, 2018, 9, 3939-3945.	2.1	47
38	A fluorometric and real-time assay for α-glucosidase activity through supramolecular self-assembly and its application for inhibitor screening. Sensors and Actuators B: Chemical, 2017, 245, 282-289.	4.0	42
39	Photophysical Tuning of Organic Ionic Crystals from Ultralong Afterglow to Highly Efficient Phosphorescence by Variation of Halides. Journal of Physical Chemistry Letters, 2018, 9, 6305-6311.	2.1	42
40	Simultaneous Detection of Multiple DNA Targets by Integrating Dualâ€Color Graphene Quantum Dot Nanoprobes and Carbon Nanotubes. Chemistry - A European Journal, 2014, 20, 16065-16069.	1.7	40
41	Achieving highly efficient aggregation-induced emission, reversible and irreversible photochromism by heavy halogen-regulated photophysics and Dae A molecular pattern-controlled photochemistry of through-space conjugated luminogens. Chemical Science, 2021, 12, 10710-10723.	3.7	39
42	Multi-stimuli responsive copper nanoclusters with bright red luminescence for quantifying acid phosphatase activity via redox-controlled luminescence switch. Analytica Chimica Acta, 2017, 984, 202-210.	2.6	37
43	Theoretical Investigation of Water Exchange on the Nanometer-Sized Polyoxocation AlO ₄ Al ₁₂ (OH) ₂₄ (H ₂ O) ₁₂ 7+ (Keggin-Al ₁₃) in Aqueous Solution. Journal of the American Chemical Society, 2008, 130, 14402-14403.	6.6	36
44	A reversible fluorescence nanoswitch based on dynamic covalent B–O bonds using functional carbon quantum dots and its application for α-glucosidase activity monitoring. Journal of Materials Chemistry C, 2017, 5, 2826-2832.	2.7	36
45	A reversible fluorescence nanoswitch based on carbon quantum dots nanoassembly for detection of pyrophosphate ion. Sensors and Actuators B: Chemical, 2015, 220, 138-145.	4.0	34
46	Reversible Switching between Phosphorescence and Fluorescence in a Unimolecular System Controlled by External Stimuli. Chemistry - A European Journal, 2018, 24, 12773-12778.	1.7	33
47	Anion-regulated transient and persistent phosphorescence and size-dependent ultralong afterglow of organic ionic crystals. Journal of Materials Chemistry C, 2019, 7, 14535-14542.	2.7	33
48	Supermolecule density functional calculations on the water exchange of aquated Al(iii) species in aqueous solution. Chemical Communications, 2008, , 3930.	2.2	32
49	Photophysical Switching between Aggregationâ€Induced Phosphorescence and Dualâ€State Emission by Isomeric Substitution. Chemistry - A European Journal, 2020, 26, 3733-3737.	1.7	31
50	Highly efficient fluorescent multi-walled carbon nanotubes functionalized with diamines and amides. Journal of Materials Chemistry, 2012, 22, 11912.	6.7	30
51	Dual-colored graphene quantum dots-labeled nanoprobes/graphene oxide: functional carbon materials for respective and simultaneous detection of DNA and thrombin. Nanotechnology, 2014, 25, 415501.	1.3	29
52	Bonding-induced emission of silyl-protected copper nanoclusters for luminescence turn-on detection of trace water in organic solvents. Analyst, The, 2017, 142, 4613-4617.	1.7	28
53	Facile synthesis of halogenated multi-walled carbon nanotubes and their unusual photoluminescence. Journal of Materials Chemistry, 2012, 22, 22113.	6.7	26
54	An aggregation-induced phosphorescence probe for calcium ion-specific detection and live-cell imaging in <i>Arabidopsis thaliana</i> . Chemical Communications, 2019, 55, 4841-4844.	2.2	26

#	Article	IF	Citations
55	Redox-Triggered Bonding-Induced Emission of Thiol-Functionalized Gold Nanoclusters for Luminescence Turn-On Detection of Molecular Oxygen. ACS Sensors, 2017, 2, 1692-1699.	4.0	25
56	Well dispersed single-walled carbon nanotubes with strong visible fluorescence in water for metal ions sensing. Chemical Communications, 2011, 47, 7167.	2.2	23
57	The visible photoluminescence mechanism of oxidized multi-walled carbon nanotubes: an experimental and theoretical investigation. Journal of Materials Chemistry C, 2013, 1, 307-314.	2.7	22
58	Assessment of the Accuracy of Theoretical Methods for Calculating 27Al Nuclear Magnetic Resonance Shielding Tensors of Aquated Aluminum Species. Journal of Physical Chemistry A, 2009, 113, 5138-5143.	1.1	21
59	Clustering-Triggered Ultralong Room-Temperature Phosphorescence of Organic Crystals through Halogen-Mediated Molecular Assembly. Journal of Physical Chemistry Letters, 2020, 11, 4962-4969.	2.1	19
60	Wavelength-dependent multicolor photochromism and fluorescence switching based on an AIE-active skeleton by regulating the conjugation of the photoactive unit. Journal of Materials Chemistry C, 2021, 9, 8249-8257.	2.7	19
61	Breaking Classic Heavyâ€Atom Effect to Achieve Heavyâ€Atomâ€Induced Dramatic Emission Enhancement of Siloleâ€Based AlEgens with Throughâ€Bond and Throughâ€Space Conjugation. Advanced Optical Materials, 2021, 9, 2101228.	3.6	18
62	Theoretical investigation of dehydration of aquated Al(OH)2+ species in aqueous solution. Dalton Transactions, 2009, , 1554.	1.6	17
63	Theoretical exploration of the water exchange mechanism of the polyoxocation GaO4Al12(OH)24(H2O)127+ in aqueous solution. Geochimica Et Cosmochimica Acta, 2009, 73, 1588-1596.	1.6	17
64	A water-soluble molecular probe with aggregation-induced emission for discriminative detection of Al3+ and Pb2+ and imaging in seedling root of Arabidopsis. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117335.	2.0	17
65	Density Functional Investigation of the Water Exchange Reaction on the Gibbsite Surface. Environmental Science & Environmental	4.6	16
66	Six-Membered-Ring-Based Radical Mechanism for Catalytic Growth of Carbon Nanotubes with Benzene Precursor. Journal of Physical Chemistry C, 2009, 113, 16495-16502.	1.5	15
67	Synthesis and Functionalization of Stable and Bright Copper Nanoclusters by In Situ Generation of Silica Shells for Bioimaging and Biosensing. ACS Applied Nano Materials, 2018, 1, 5673-5681.	2.4	15
68	Density functional studies of the structural characteristics, 27Al NMR chemical shifts and water-exchange reactions of Al3008(OH)56(H2O)2618+(Al30) in aqueous solution. Geochimica Et Cosmochimica Acta, 2010, 74, 1230-1237.	1.6	14
69	A simple and efficient phosphorescent probe for iodide-specific detection based on crystallization-induced phosphorescence of organic ionic crystals. Journal of Materials Chemistry C, 2019, 7, 43-47.	2.7	14
70	Multiwavelength-controlled multicolor photochromism and fluorescence switching based on an efficient photocyclization reaction by introducing two photoactive subunits into AlEgens. Journal of Materials Chemistry C, 2022, 10, 8674-8683.	2.7	13
71	Thiol-triggered disaggregation-induced emission controlled by competitive coordination for acetylcholinesterase monitoring and inhibitor screening. Sensors and Actuators B: Chemical, 2018, 255, 22-28.	4.0	12
72	Thiol–ene click reaction-induced fluorescence enhancement by altering the radiative rate for assaying butyrylcholinesterase activity. Analyst, The, 2019, 144, 559-566.	1.7	12

#	Article	IF	Citations
73	A phosphorescence "turn-on―probe for the detection and imaging of Al3+ based on aggregation-induced emission. Talanta, 2020, 219, 121298.	2.9	12
74	Rational design of state-depending photoactivatable and photoconvertible fluorescent AlEgens through a rapid photocyclodehydrogenation reaction. Dyes and Pigments, 2022, 201, 110235.	2.0	12
75	Density functional study of the water exchange reaction of the polyoxocation GeO4Al12(OH)24(H2O)128+ (K-GeAl12) in aqueous solution. Dalton Transactions, 2009, , 8013.	1.6	11
76	Multicolour fluorescent graphene oxide by cutting carbon nanotubes upon oxidation. CrystEngComm, 2012, 14, 4976.	1.3	11
77	Phenylsulfonic acid functionalized carbon quantum dots based biosensor for acetylcholinesterase activity monitoring andÂinhibitor screening. RSC Advances, 2016, 6, 105454-105460.	1.7	10
78	Viscosity-sensitive thiolated gold nanoclusters with diffusion-controlled emission for intracellular viscosity imaging. Analyst, The, 2019, 144, 4483-4487.	1.7	10
79	Coordinate bonding-induced emission of gold-glutathione complex for sensitive detection of aluminum species. Sensors and Actuators B: Chemical, 2018, 272, 1-7.	4.0	9
80	Endowing nitro-compounds with bright and stimuli-responsive luminescence based on propeller-like AlEgens. Journal of Materials Chemistry C, 2021, 9, 12177-12183.	2.7	8
81	Antipermeability Strategy to Achieve Extremely High Specificity and Ultralong Imaging of Diverse Cell Membranes Based on Restriction-Induced Emission of AlEgens. Analytical Chemistry, 2022, 94, 4048-4058.	3.2	7
82	Tuning the energy barrier of water exchange reactions on Al(iii) by interaction with the single-walled carbon nanotubes. Dalton Transactions, 2011, 40, 4183.	1.6	6
83	Theoretical investigation of the dissociative interchange (Id) mechanism for water exchange on magnesium(II) in aqueous solution. Inorganica Chimica Acta, 2010, 363, 3627-3631.	1.2	5
84	Theoretical investigation of formation mechanism of bipyridyl molecule on Ni(111) surface: implication for synthesis of N-doped graphene from pyridine. Physical Chemistry Chemical Physics, 2011, 13, 6053.	1.3	5
85	Activated carbon/diatomiteâ€based magnetic nanocomposites for magnetic solidâ€phase extraction of <i>S</i> â€phenylmercapturic acid from human urine. Biomedical Chromatography, 2020, 34, e4834.	0.8	5
86	Unusual visible luminescence of aluminium polyoxocations in aqueous solution. Chemical Communications, 2011, 47, 12652.	2.2	4
87	Esterase-Activated Precipitating Strategy to Achieve Highly Specific Detection and Long-Term Imaging of Calcium Ions by Aggregation-Induced Phosphorescence Probe. Analytical Chemistry, 2022, 94, 5406-5414.	3.2	4
88	Visible photoluminescence of polyoxoniobates in aqueous solution and their high electrocatalytic activities for water oxidation. Open Journal of Inorganic Chemistry, 2013, 03, 59-69.	0.7	3