Maik A Jochmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3308273/publications.pdf

Version: 2024-02-01

80 papers 2,216 citations

218381 26 h-index 243296 44 g-index

82 all docs 82 docs citations

times ranked

82

2061 citing authors

#	Article	IF	Citations
1	Linking reaction rate constants and isotope fractionation of ozonation reactions using phenols as probes. Water Research, 2022, 210, 117931.	5.3	6
2	How to Couple LC-IRMS with HRMS─A Proof-of-Concept Study. Analytical Chemistry, 2022, 94, 2981-2987.	3.2	9
3	Two Pathways Compete in the Mn(II)-Catalyzed Oxidation of Aminotrismethylene Phosphonate (ATMP). Environmental Science & Envir	4.6	8
4	Aromatic amines contents of cigarette butts: Fresh and aged cigarette butts vs unsmoked cigarette. Chemosphere, 2022, 301, 134735.	4.2	27
5	In-tube dynamic extraction for analysis of volatile organic compounds in honey samples. Food Chemistry: X, 2022, 14, 100337.	1.8	2
6	Insights into amino acid fractionation and incorporation by compound-specific carbon isotope analysis of three-spined sticklebacks. Scientific Reports, 2022, 12, .	1.6	4
7	Optimization and automation of rapid and selective analysis of fatty acid methyl esters from aqueous samples by headspace SPME arrow extraction followed by GC–MS/MS analysis. Analytical and Bioanalytical Chemistry, 2022, 414, 6473-6483.	1.9	6
8	BTEX compounds leachates from cigarette butts into water environment: A primary study. Environmental Pollution, 2021, 269, 116185.	3.7	41
9	Eye fluke infection changes diet composition in juvenile European perch (Perca fluviatilis). Scientific Reports, 2021, 11, 3440.	1.6	10
10	Development and comparison of direct immersion solid phase micro extraction Arrow-GC-MS for the determination of selected pesticides in water. Microchemical Journal, 2021, 164, 106006.	2.3	18
11	A nebulizer interface for liquid chromatography - Flame ionization detection: Development and validation. Talanta, 2020, 206, 120229.	2.9	2
12	Determination of liquid chromatography/flame ionization detection response factors for N-heterocycles, carboxylic acids, halogenated compounds, and others. Analytical and Bioanalytical Chemistry, 2020, 412, 171-179.	1.9	0
13	Stable carbon isotope analysis of polyphosphonate complexing agents by anion chromatography coupled to isotope ratio mass spectrometry: method development and application. Analytical and Bioanalytical Chemistry, 2020, 412, 4827-4835.	1.9	11
14	Stable isotope analysis spills the beans about spatial variance in trophic structure in a fish host $\hat{a} \in \hat{a}$ parasite system from the Vaal River System, South Africa. International Journal for Parasitology: Parasites and Wildlife, 2020, 12, 134-141.	0.6	8
15	Carbon Isotope Fractionation of Substituted Benzene Analogs during Oxidation with Ozone and Hydroxyl Radicals: How Should Experimental Data Be Interpreted?. Environmental Science & Emp; Technology, 2020, 54, 6713-6722.	4.6	12
16	Optimization and validation of automated solid-phase microextraction arrow technique for determination of phosphorus flame retardants in water. Journal of Chromatography A, 2020, 1626, 461349.	1.8	10
17	You are how you eat: differences in trophic position of two parasite species infecting a single host according to stable isotopes. Parasitology Research, 2020, 119, 1393-1400.	0.6	20
18	Polycyclic aromatic hydrocarbons (PAHs) leachates from cigarette butts into water. Environmental Pollution, 2020, 259, 113916.	3.7	81

#	Article	IF	CITATIONS
19	The monogenean <i>Paradiplozoon ichthyoxanthon</i> behaves like a micropredator on two of its hosts, as indicated by stable isotopes. Journal of Helminthology, 2019, 93, 71-75.	0.4	7
20	Determining the role of redox-active materials during laser-induced water decomposition. Physical Chemistry Chemical Physics, 2019, 21, 18636-18651.	1.3	41
21	A green approach for the extraction of diamondoids from petroleum source rock. Analytica Chimica Acta, 2019, 1091, 23-29.	2.6	2
22	A centrifuge tube reactor for the determination of bacterial methane oxidation enrichment factors without influence of diffusion related isotope fractionation. Science of the Total Environment, 2019, 659, 1382-1386.	3.9	1
23	New Concepts for the Determination of Oxidation Efficiencies in Liquid Chromatography–Isotope Ratio Mass Spectrometry. Analytical Chemistry, 2019, 91, 5067-5073.	3.2	4
24	Automated determination of picogram-per-liter level of water taste and odor compounds using solid-phase microextraction arrow coupled with gas chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry, 2019, 411, 2653-2662.	1.9	21
25	Cigarette butts: An overlooked source of PAHs in the environment?. Environmental Pollution, 2019, 249, 932-939.	3.7	86
26	Determination of liquid chromatography/flame ionization detection response factors for alcohols, ketones, and sugars. Analytical and Bioanalytical Chemistry, 2019, 411, 2635-2644.	1.9	2
27	Applying reverse stable isotope labeling analysis by mid-infrared laser spectroscopy to monitor BDOC in recycled wastewater. Science of the Total Environment, 2019, 665, 1064-1072.	3.9	7
28	Monitoring of the total carbon and nitrogen balance during the mineralization of nitrogen containing compounds by heat activated persulfate. Chemical Engineering Journal, 2019, 367, 160-168.	6.6	9
29	An overview of approaches in liquid chromatography flame ionization detection. TrAC - Trends in Analytical Chemistry, 2019, 110, 143-149.	5.8	8
30	Solventless microextraction techniques for water analysis. TrAC - Trends in Analytical Chemistry, 2019, 113, 321-331.	5.8	57
31	Origin of Xylitol in Chewing Gum: A Compound-Specific Isotope Technique for the Differentiation of Corn- and Wood-Based Xylitol by LC-IRMS. Journal of Agricultural and Food Chemistry, 2018, 66, 2015-2020.	2.4	11
32	Direct Photolysis of Sulfamethoxazole Using Various Irradiation Sources and Wavelength Ranges—Insights from Degradation Product Analysis and Compound-Specific Stable Isotope Analysis. Environmental Science & Environment	4.6	42
33	Carbon Isotopic Fractionation via Diffusion in a Coarse Material. Geochemistry, Geophysics, Geosystems, 2018, 19, 3246-3253.	1.0	1
34	Understanding trophic interactions in host-parasite associations using stable isotopes of carbon and nitrogen. Parasites and Vectors, 2017, 10, 90.	1.0	35
35	Investigation of carbon-based nanomaterials as sorbents for headspace in-tube extraction of polycyclic aromatic hydrocarbons. Analytical and Bioanalytical Chemistry, 2017, 409, 3861-3870.	1.9	16
36	Sorbent material characterization using inâ€tube extraction needles as inverse gas chromatography column. Journal of Separation Science, 2017, 40, 2390-2397.	1.3	7

3

#	Article	IF	CITATIONS
37	Degradation of sulfamethoxazole using ozone and chlorine dioxide - Compound-specific stable isotope analysis, transformation product analysis and mechanistic aspects. Water Research, 2017, 122, 280-289.	5. 3	62
38	Monitoring Microbial Mineralization Using Reverse Stable Isotope Labeling Analysis by Mid-Infrared Laser Spectroscopy. Environmental Science & Eamp; Technology, 2017, 51, 11876-11883.	4.6	16
39	Characterization of methane oxidation in a simulated landfill cover system by comparing molecular and stable isotope mass balances. Waste Management, 2017, 69, 281-288.	3.7	10
40	Systematic comparison of static and dynamic headspace sampling techniques for gas chromatography. Analytical and Bioanalytical Chemistry, 2016, 408, 6567-6579.	1.9	37
41	A metagenomic-based survey of microbial (de)halogenation potential in a German forest soil. Scientific Reports, 2016, 6, 28958.	1.6	51
42	PAL SPME Arrowâ€"evaluation of a novel solid-phase microextraction device for freely dissolved PAHs in water. Analytical and Bioanalytical Chemistry, 2016, 408, 943-952.	1.9	96
43	River restoration and the trophic structure of benthic invertebrate communities across 16 European restoration projects. Hydrobiologia, 2016, 769, 105-120.	1.0	26
44	Evaluating the influence of wastewater composition on the growth of Microthrix parvicella by GCxGC/qMS and real-time PCR. Water Research, 2016, 88, 510-523.	5.3	29
45	Optimization of a largeâ€volume injection method for compoundâ€specific isotope analysis of polycyclic aromatic compounds at trace concentrations. Rapid Communications in Mass Spectrometry, 2015, 29, 2349-2360.	0.7	10
46	Coreâ€Shell Hybrid Particles by Alternating Copolymerization of Ionic Liquid Monomers from Silica as Sorbent for Solid Phase Microextraction. Macromolecular Materials and Engineering, 2015, 300, 1049-1056.	1.7	3
47	lonic Liquid as Green Solvent for Leaching of Polycyclic Aromatic Hydrocarbons from Petroleum Source Rock. Industrial & Department of Polycyclic Aromatic Hydrocarbons from Petroleum Source Rock. Industrial	1.8	11
48	Optimization strategies of in-tube extraction (ITEX) methods. Analytical and Bioanalytical Chemistry, 2015, 407, 6827-6838.	1.9	22
49	Dual element (15N/14N, 13C/12C) isotope analysis of glyphosate and AMPA by derivatization-gas chromatography isotope ratio mass spectrometry (GC/IRMS) combined with LC/IRMS. Analytical and Bioanalytical Chemistry, 2015, 407, 5249-5260.	1.9	26
50	Microwave-Assisted Ionic Liquid Extraction of n-Alkanes and Isoprenoid Hydrocarbons from Petroleum Source Rock. Chromatographia, 2015, 78, 1201-1209.	0.7	6
51	In-Tube Extraction-GC-MS as a High-Capacity Enrichment Technique for the Analysis of Alcoholic Beverages. Journal of Agricultural and Food Chemistry, 2014, 62, 3081-3091.	2.4	16
52	Carbon Isotope Ratio Analysis of Steroids by High-Temperature Liquid Chromatography-Isotope Ratio Mass Spectrometry. Analytical Chemistry, 2014, 86, 2297-2302.	3.2	14
53	Solvent-Free Extraction and Injection Techniques. , 2014, , 371-412.		4
54	Position-specific isotope analysis of the methyl group carbon in methylcobalamin for the investigation of biomethylation processes. Analytical and Bioanalytical Chemistry, 2013, 405, 2833-2841.	1.9	10

#	Article	IF	CITATIONS
55	Multi-walled carbon nanotubes as sorptive material for solventless in-tube microextraction (ITEX2)—a factorial design study. Analytical and Bioanalytical Chemistry, 2013, 405, 8387-8395.	1.9	22
56	Carbon isotope ratio measurements of glyphosate and AMPA by liquid chromatography coupled to isotope ratio mass spectrometry. Analytical and Bioanalytical Chemistry, 2013, 405, 2869-2878.	1.9	26
57	Origin and Fate of Organic Compounds in Water: Characterization by Compound-Specific Stable Isotope Analysis. Annual Review of Analytical Chemistry, 2012, 5, 133-155.	2.8	62
58	When Other Separation Techniques Fail: Compound-Specific Carbon Isotope Ratio Analysis of Sulfonamide Containing Pharmaceuticals by High-Temperature-Liquid Chromatography-Isotope Ratio Mass Spectrometry. Analytical Chemistry, 2012, 84, 7656-7663.	3.2	33
59	Caffeine in Your Drink: Natural or Synthetic?. Analytical Chemistry, 2012, 84, 2805-2810.	3.2	60
60	Fingerprinting of red wine by headspace solid-phase dynamic extraction of volatile constituents. Analytical and Bioanalytical Chemistry, 2012, 403, 2429-2436.	1.9	11
61	Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Analytical and Bioanalytical Chemistry, 2012, 403, 2471-2491.	1.9	234
62	Factors Controlling Leaching of Polycyclic Aromatic Hydrocarbons from Petroleum Source Rock Using Nonionic Surfactant. Chromatographia, 2012, 75, 213-221.	0.7	8
63	Solvent-free microextraction techniques in gas chromatography. Analytical and Bioanalytical Chemistry, 2012, 402, 565-571.	1.9	34
64	Compound-Specific Chlorine Isotope Analysis: A Comparison of Gas Chromatography/Isotope Ratio Mass Spectrometry and Gas Chromatography/Quadrupole Mass Spectrometry Methods in an Interlaboratory Study. Analytical Chemistry, 2011, 83, 7624-7634.	3.2	101
65	Microwave-assisted nonionic surfactant extraction of aliphatic hydrocarbons from petroleum source rock. Analytica Chimica Acta, 2011, 691, 48-55.	2.6	22
66	Highâ€ŧemperature reversedâ€phase liquid chromatography coupled to isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 2971-2980.	0.7	29
67	In-Tube Extraction of Volatile Organic Compounds from Aqueous Samples: An Economical Alternative to Purge and Trap Enrichment. Analytical Chemistry, 2010, 82, 7641-7648.	3.2	68
68	Stable carbon and hydrogen isotope analysis of methyl tert-butyl ether and tert-amyl methyl ether by purge and trap-gas chromatography-isotope ratio mass spectrometry: Method evaluation and application. Journal of Environmental Monitoring, 2010, 12, 347-354.	2.1	14
69	Determination of volatile organic compounds by solid-phase microextractionâ€"gas chromatography-differential mobility spectrometry. International Journal for Ion Mobility Spectrometry, 2009, 12, 123-130.	1.4	10
70	Determination of ¹³ C/ ¹² C Isotopic Ratios of Biogenic Organometal(loid) Compounds in Complex Matrixes. Analytical Chemistry, 2009, 81, 4312-4319.	3.2	7
71	Flow Injection Analysisâ^'lsotope Ratio Mass Spectrometry for Bulk Carbon Stable Isotope Analysis of Alcoholic Beverages. Journal of Agricultural and Food Chemistry, 2009, 57, 10489-10496.	2.4	14
72	Pitfalls in compound-specific isotope analysis of environmental samples. Analytical and Bioanalytical Chemistry, 2008, 390, 591-603.	1.9	66

#	Article	IF	CITATIONS
73	In-tube extraction for enrichment of volatile organic hydrocarbons from aqueous samples. Journal of Chromatography A, 2008, 1179, 96-105.	1.8	65
74	Isotopenanalyse – ein neues Werkzeug in der Umweltanalytik. Nachrichten Aus Der Chemie, 2007, 55, 536-539.	0.0	0
75	Indications for pedogenic formation of perylene in a terrestrial soil profile: Depth distribution and first results from stable carbon isotope ratios. Applied Geochemistry, 2007, 22, 2652-2663.	1.4	26
76	Determination of volatile organic hydrocarbons in water samples by solid-phase dynamic extraction. Analytical and Bioanalytical Chemistry, 2007, 387, 2163-2174.	1.9	50
77	Novel Analytical Methods for the Determination of Fuel Oxygenates in Water. Handbook of Environmental Chemistry, 2007, , 1-30.	0.2	1
78	A new approach to determine method detection limits for compound-specific isotope analysis of volatile organic compounds. Rapid Communications in Mass Spectrometry, 2006, 20, 3639-3648.	0.7	96
79	Solid-phase dynamic extraction for the enrichment of polar volatile organic compounds from water. Journal of Chromatography A, 2006, 1115, 208-216.	1.8	74
80	Novel Analytical Methods for the Determination of Fuel Oxygenates in Water., 0,, 1-30.		0