
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/330801/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Action recognition in the premotor cortex. Brain, 1996, 119, 593-609.	3.7	4,538
2	Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 1996, 3, 131-141.	3.3	4,178
3	Understanding motor events: a neurophysiological study. Experimental Brain Research, 1992, 91, 176-180.	0.7	2,983
4	I Know What You Are Doing. Neuron, 2001, 31, 155-165.	3.8	1,085
5	Localization of grasp representations in humans by positron emission tomography. Experimental Brain Research, 1996, 112, 103-11.	0.7	902
6	Active perception: sensorimotor circuits as a cortical basis for language. Nature Reviews Neuroscience, 2010, 11, 351-360.	4.9	840
7	Speech listening specifically modulates the excitability of tongue muscles: a TMS study. European Journal of Neuroscience, 2002, 15, 399-402.	1.2	709
8	Premotor Cortex Activation during Observation and Naming of Familiar Tools. NeuroImage, 1997, 6, 231-236.	2.1	678
9	NEUROSCIENCE: Enhanced: The Space Around Us. Science, 1997, 277, 190-191.	6.0	677
10	Object Representation in the Ventral Premotor Cortex (Area F5) of the Monkey. Journal of Neurophysiology, 1997, 78, 2226-2230.	0.9	646
11	The Motor Somatotopy of Speech Perception. Current Biology, 2009, 19, 381-385.	1.8	524
12	The iCubÂhumanoid robot: An open-systems platform for research in cognitive development. Neural Networks, 2010, 23, 1125-1134.	3.3	460
13	Human motor cortex excitability during the perception of others' action. Current Opinion in Neurobiology, 2005, 15, 213-218.	2.0	439
14	Corticospinal excitability is specifically modulated by motor imagery: a magnetic stimulation study. Neuropsychologia, 1998, 37, 147-158.	0.7	389
15	Visuomotor neurons: ambiguity of the discharge or â€~motor' perception?. International Journal of Psychophysiology, 2000, 35, 165-177.	0.5	337
16	Action for perception: A motor-visual attentional effect Journal of Experimental Psychology: Human Perception and Performance, 1999, 25, 1673-1692.	0.7	280
17	Hand action preparation influences the responses to hand pictures. Neuropsychologia, 2002, 40, 492-502.	0.7	264
18	Broca's Area in Language, Action, and Music. Annals of the New York Academy of Sciences, 2009, 1169, 448-458.	1.8	257

#	Article	IF	CITATIONS
19	Low-grade glioma surgery in eloquent areas: volumetric analysis of extent of resection and its impact on overall survival. A single-institution experience in 190 patients. Journal of Neurosurgery, 2012, 117, 1039-1052.	0.9	247
20	Space coding by premotor cortex. Experimental Brain Research, 1992, 89, 686-690.	0.7	204
21	Encoding of human action in Broca's area. Brain, 2009, 132, 1980-1988.	3.7	201
22	Modulation of spinal excitability during observation of hand actions in humans. European Journal of Neuroscience, 2001, 13, 190-194.	1.2	163
23	From mirror neurons to imitation: Facts and speculations. , 2002, , 247-266.		145
24	Evidence for visuomotor priming effect. NeuroReport, 1996, 8, 347-349.	0.6	144
25	Tutorial: guidelines for standardized performance tests for electrodes intended for neural interfaces and bioelectronics. Nature Protocols, 2020, 15, 3557-3578.	5.5	142
26	The role of the motor system in discriminating normal and degraded speech sounds. Cortex, 2012, 48, 882-887.	1.1	141
27	Do We Really Need Vision? How Blind People "See―the Actions of Others. Journal of Neuroscience, 2009, 29, 9719-9724.	1.7	134
28	What can music tell us about social interaction?. Trends in Cognitive Sciences, 2015, 19, 111-114.	4.0	130
29	Integration of Action and Language Knowledge: A Roadmap for Developmental Robotics. IEEE Transactions on Autonomous Mental Development, 2010, 2, 167-195.	2.3	126
30	Highly Stable Glassy Carbon Interfaces for Long-Term Neural Stimulation and Low-Noise Recording of Brain Activity. Scientific Reports, 2017, 7, 40332.	1.6	116
31	The mirror neuron system: New frontiers. Social Neuroscience, 2008, 3, 193-198.	0.7	114
32	The Evolution of Social Cognition: Goal Familiarity Shapes Monkeys' Action Understanding. Current Biology, 2008, 18, 227-232.	1.8	113
33	Affordances in Psychology, Neuroscience, and Robotics: A Survey. IEEE Transactions on Cognitive and Developmental Systems, 2018, 10, 4-25.	2.6	108
34	Force requirements of observed object lifting are encoded by the observer's motor system: a TMS study. European Journal of Neuroscience, 2010, 31, 1144-1153.	1.2	106
35	Electrophysiology of Action Representation. Journal of Clinical Neurophysiology, 2004, 21, 157-169.	0.9	103
36	Grasping Objects and Grasping Action Meanings: The Dual Role of Monkey Rostroventral Premotor Cortex (Area F5). Novartis Foundation Symposium, 1998, 218, 81-108.	1.2	100

#	Article	IF	CITATIONS
37	Precision grasping in humans: from motor control to cognition. Current Opinion in Neurobiology, 2007, 17, 644-648.	2.0	99
38	Role of Broca's area in encoding sequential human actions: a virtual lesion study. NeuroReport, 2009, 20, 1496-1499.	0.6	97
39	Surgery of Insular Nonenhancing Gliomas. Neurosurgery, 2012, 70, 1081-1094.	0.6	97
40	Hand Actions and Speech Representation in Broca's Area. Cortex, 2006, 42, 486-490.	1.1	96
41	Leadership in Orchestra Emerges from the Causal Relationships of Movement Kinematics. PLoS ONE, 2012, 7, e35757.	1.1	94
42	Training the Motor Cortex by Observing the Actions of Others During Immobilization. Cerebral Cortex, 2014, 24, 3268-3276.	1.6	85
43	Motor Contagion during Human-Human and Human-Robot Interaction. PLoS ONE, 2014, 9, e106172.	1.1	84
44	PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23, 342-350.	2.7	83
45	Carbon nanotube composite coating of neural microelectrodes preferentially improves the multiunit signal-to-noise ratio. Journal of Neural Engineering, 2011, 8, 066013.	1.8	79
46	Eye Position Affects Orienting of Visuospatial Attention. Current Biology, 2004, 14, 331-333.	1.8	78
47	Sensorimotor communication in professional quartets. Neuropsychologia, 2014, 55, 98-104.	0.7	77
48	When gaze opens the channel for communication: Integrative role of IFG and MPFC. NeuroImage, 2015, 119, 63-69.	2.1	76
49	The motor cortex is causally related to predictive eye movements during action observation. Neuropsychologia, 2013, 51, 488-492.	0.7	74
50	Role of Broca's Area in Implicit Motor Skill Learning: Evidence from Continuous Theta-burst Magnetic Stimulation. Journal of Cognitive Neuroscience, 2012, 24, 80-92.	1.1	72
51	Superior Electrochemical Performance of Carbon Nanotubes Directly Grown on Sharp Microelectrodes. ACS Nano, 2011, 5, 2206-2214.	7.3	70
52	Enhancement of force after action observation. Neuropsychologia, 2007, 45, 3114-3121.	0.7	69
53	The contribution of the frontal lobe to the perception of speech. Journal of Neurolinguistics, 2012, 25, 328-335.	0.5	66
54	Smaller, softer, lower-impedance electrodes for human neuroprosthesis: a pragmatic approach. Frontiers in Neuroengineering, 2014, 7, 8.	4.8	66

#	Article	IF	CITATIONS
55	Phonological and lexical motor facilitation during speech listening: A transcranial magnetic stimulation study. Journal of Physiology (Paris), 2008, 102, 101-105.	2.1	65
56	The mirror-neurons system: data and models. Progress in Brain Research, 2007, 164, 39-59.	0.9	64
57	Measuring Human-Robot Interaction Through Motor Resonance. International Journal of Social Robotics, 2012, 4, 223-234.	3.1	64
58	Effect of weight-related labels on corticospinal excitability during observation of grasping: a TMS study. Experimental Brain Research, 2011, 211, 161-167.	0.7	63
59	Automatic versus Voluntary Motor Imitation: Effect of Visual Context and Stimulus Velocity. PLoS ONE, 2010, 5, e13506.	1.1	63
60	Language in shadow. Social Neuroscience, 2006, 1, 77-89.	0.7	61
61	Surgery for insular low-grade glioma: predictors of postoperative seizure outcome. Journal of Neurosurgery, 2014, 120, 12-23.	0.9	61
62	Understanding mirror neurons. Interaction Studies, 2006, 7, 197-232.	0.4	60
63	Energy-related optimal control accounts for gravitational load: comparing shoulder, elbow, and wrist rotations. Journal of Neurophysiology, 2014, 111, 4-16.	0.9	60
64	Measuring social interaction in music ensembles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150377.	1.8	59
65	Deep brain stimulation: Subthalamic nucleus electrophysiological activity in awake and anesthetized patients. Clinical Neurophysiology, 2012, 123, 2406-2413.	0.7	58
66	Conformable polyimide-based μECoGs: Bringing the electrodes closer to the signal source. Biomaterials, 2020, 255, 120178.	5.7	58
67	A Roadmap for Cognitive Development in Humanoid Robots. Cognitive Systems Monographs, 2011, , .	0.1	56
68	New perspectives on the dialogue between brains and machines. Frontiers in Neuroscience, 2010, 4, 44.	1.4	51
69	Electrodeposited PEDOT:Nafion Composite for Neural Recording and Stimulation. Advanced Healthcare Materials, 2019, 8, e1900765.	3.9	51
70	An auto-encoder based approach to unsupervised learning of subword units. , 2014, , .		50
71	Biologically Compatible Neural Interface To Safely Couple Nanocoated Electrodes to the Surface of the Brain. ACS Nano, 2013, 7, 3887-3895.	7.3	48
72	Interaction of visual hemifield and body view in biological motion perception. European Journal of Neuroscience, 2008, 27, 514-522.	1.2	47

#	Article	IF	CITATIONS
73	Origins of 1/f ² scaling in the power spectrum of intracortical local field potential. Journal of Neurophysiology, 2012, 107, 984-994.	0.9	46
74	Peripheral oculomotor palsy affects orienting of visuospatial attention. NeuroReport, 2001, 12, 3283-3286.	0.6	43
75	Corticospinal Facilitation during Observation of Graspable Objects: A Transcranial Magnetic Stimulation Study. PLoS ONE, 2012, 7, e49025.	1.1	43
76	Scaling of capacitance of PEDOT:PSS: volume <i>vs.</i> area. Journal of Materials Chemistry C, 2020, 8, 11252-11262.	2.7	42
77	Parietal cortex involvement in the localization of tactile and noxious mechanical stimuli: A transcranial magnetic stimulation study. Behavioural Brain Research, 2007, 178, 183-189.	1.2	41
78	Distinct Olfactory Cross-Modal Effects on the Human Motor System. PLoS ONE, 2008, 3, e1702.	1.1	41
79	Peripersonal Space and Margin of Safety around the Body: Learning Visuo-Tactile Associations in a Humanoid Robot with Artificial Skin. PLoS ONE, 2016, 11, e0163713.	1.1	41
80	Functional effect of short-term immobilization: Kinematic changes and recovery on reaching-to-grasp. Neuroscience, 2012, 215, 127-134.	1.1	40
81	Bio-inspired hybrid microelectrodes: a hybrid solution to improve long-term performance of chronic intracortical implants. Frontiers in Neuroengineering, 2014, 7, 7.	4.8	39
82	Lexicality drives audio-motor transformations in Broca's area. Brain and Language, 2010, 112, 3-11.	0.8	37
83	Listener-Speaker Perceived Distance Predicts the Degree of Motor Contribution to Speech Perception. Cerebral Cortex, 2015, 25, 281-288.	1.6	36
84	Robots can be perceived as goal-oriented agents. Interaction Studies, 2013, 14, 329-350.	0.4	33
85	Face Landmark-based Speaker-independent Audio-visual Speech Enhancement in Multi-talker Environments. , 2019, , .		33
86	Poly(3,4â€ethylenedioxythiophene)â€Based Neural Interfaces for Recording and Stimulation: Fundamental Aspects and In Vivo Applications. Advanced Science, 2022, 9, e2104701.	5.6	32
87	New insights on sensorimotor integration: From hand action to speech perception. Brain and Cognition, 2003, 53, 514-524.	0.8	31
88	Disruption of Broca's Area Alters Higher-order Chunking Processing during Perceptual Sequence Learning. Journal of Cognitive Neuroscience, 2016, 28, 402-417.	1.1	31
89	Integrating articulatory data in deep neural network-based acoustic modeling. Computer Speech and Language, 2016, 36, 173-195.	2.9	31
90	In Vivo Dopamine Detection and Single Unit Recordings Using Intracortical Glassy Carbon Microelectrode Arrays. MRS Advances, 2018, 3, 1629-1634.	0.5	31

#	Article	IF	CITATIONS
91	Vocal pitch discrimination in the motor system. Brain and Language, 2011, 118, 9-14.	0.8	30
92	Automatic onlinespike sorting with singular value decomposition and fuzzy C-mean clustering. BMC Neuroscience, 2012, 13, 96.	0.8	30
93	pHEMA Encapsulated PEDOT-PSS-CNT Microsphere Microelectrodes for Recording Single Unit Activity in the Brain. Frontiers in Neuroscience, 2016, 10, 151.	1.4	29
94	Cortical control of objectâ€specific grasp relies on adjustments of both activity and effective connectivity: a common marmoset study. Journal of Physiology, 2017, 595, 7203-7221.	1.3	27
95	Glassy carbon MEMS for novel origami-styled 3D integrated intracortical and epicortical neural probes. Journal of Micromechanics and Microengineering, 2018, 28, 065009.	1.5	27
96	On the longevity of flexible neural interfaces: Establishing biostability of polyimide-based intracortical implants. Biomaterials, 2022, 281, 121372.	5.7	27
97	Desiderata for developmental cognitive architectures. Biologically Inspired Cognitive Architectures, 2016, 18, 116-127.	0.9	26
98	Single walled carbon nanohorns composite for neural sensing and stimulation. Sensors and Actuators B: Chemical, 2018, 271, 280-288.	4.0	26
99	Movement kinematics drive chain selection toward intention detection. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10452-10457.	3.3	25
100	Shaping the Dynamics of a Bidirectional Neural Interface. PLoS Computational Biology, 2012, 8, e1002578.	1.5	24
101	Motor excitability evaluation in developmental stuttering: A transcranial magnetic stimulation study. Cortex, 2013, 49, 781-792.	1.1	24
102	Incorporation of Silicon Carbide and Diamondâ€Like Carbon as Adhesion Promoters Improves In Vitro and In Vivo Stability of Thinâ€Film Glassy Carbon Electrocorticography Arrays. Advanced Biology, 2018, 2, 1700081.	3.0	24
103	Glassy Carbon Electrocorticography Electrodes on Ultra-Thin and Finger-Like Polyimide Substrate: Performance Evaluation Based on Different Electrode Diameters. Materials, 2018, 11, 2486.	1.3	23
104	A New Drug Delivery System Based on Tauroursodeoxycholic Acid and PEDOT. Chemistry - A European Journal, 2019, 25, 2322-2329.	1.7	23
105	Multilayer poly(3,4-ethylenedioxythiophene)-dexamethasone and poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate-carbon nanotubes coatings on glassy carbon microelectrode arrays for controlled drug release. Biointerphases, 2017, 12, 031002.	0.6	23
106	Beyond Motor Scheme: A Supramodal Distributed Representation in the Action-Observation Network. PLoS ONE, 2013, 8, e58632.	1.1	22
107	Flexible Bioelectronic Devices Based on Micropatterned Monolithic Carbon Fiber Mats. Advanced Materials Technologies, 2020, 5, 1900713.	3.0	21
108	Neuromorphic Organic Devices that Specifically Discriminate Dopamine from Its Metabolites by Nonspecific Interactions. Advanced Functional Materials, 2020, 30, 2002141.	7.8	21

#	Article	IF	CITATIONS
109	Does Observation of Postural Imbalance Induce a Postural Reaction?. PLoS ONE, 2011, 6, e17799.	1.1	20
110	Vision of tongue movements bias auditory speech perception. Neuropsychologia, 2014, 63, 85-91.	0.7	20
111	Corticospinal excitability during painful self-stimulation in humans: a transcranial magnetic stimulation study. Neuroscience Letters, 2004, 361, 250-253.	1.0	19
112	Temporal prediction of touch instant during observation of human and robot grasping. Brain Research Bulletin, 2008, 75, 770-774.	1.4	19
113	Superlinear Summation of Information in Premotor Neuron Pairs. International Journal of Neural Systems, 2017, 27, 1650009.	3.2	19
114	Biochemically Controlled Release of Dexamethasone Covalently Bound to PEDOT. Chemistry - A European Journal, 2018, 24, 10300-10305.	1.7	19
115	Alterations in fiber pathways reveal brain tumor typology: a diffusion tractography study. PeerJ, 2014, 2, e497.	0.9	19
116	Broca's Region: A Speech Area?. , 2006, , 137-152.		18
117	Visual detection is locked to the internal dynamics of cortico-motor control. PLoS Biology, 2020, 18, e3000898.	2.6	18
118	Chemical vapour deposited carbon nanotube coated microelectrodes for intracortical neural recording. Physica Status Solidi (B): Basic Research, 2010, 247, 2703-2707.	0.7	17
119	The ITALK Project: A Developmental Robotics Approach to the Study of Individual, Social, and Linguistic Learning. Topics in Cognitive Science, 2014, 6, 534-544.	1.1	17
120	Early modulation of intra-cortical inhibition during the observation of action mistakes. Scientific Reports, 2018, 8, 1784.	1.6	17
121	Functional magnetic resonance imaging: Measuring versus estimating. Neurolmage, 2007, 37, 1042-1044.	2.1	16
122	Action observation effects reflect the modular organization of the human motor system. Cortex, 2017, 95, 104-118.	1.1	16
123	Tunable Short-Term Plasticity Response in Three-Terminal Organic Neuromorphic Devices. ACS Applied Electronic Materials, 2020, 2, 1849-1854.	2.0	16
124	Independent Component Decomposition of Human Somatosensory Evoked Potentials Recorded by Micro-Electrocorticography. International Journal of Neural Systems, 2017, 27, 1650052.	3.2	15
125	Multi-layer adaptation of group coordination in musical ensembles. Scientific Reports, 2019, 9, 5854.	1.6	15
126	Motor cortical inhibition during concurrent action execution and action observation. NeuroImage, 2020, 208, 116445.	2.1	15

#	Article	IF	CITATIONS
127	Parallel fast and slow motor inhibition processes in Joint Action coordination. Cortex, 2020, 133, 346-357.	1.1	15
128	Motor system recruitment during action observation: No correlation between mu-rhythm desynchronization and corticospinal excitability. PLoS ONE, 2018, 13, e0207476.	1.1	14
129	Activity in ventral premotor cortex is modulated by vision of own hand in action. PeerJ, 2013, 1, e88.	0.9	14
130	Ultradian and circadian changes in the cAMP concentration in the preoptic region of the rat. Brain Research, 1991, 551, 132-135.	1.1	13
131	Bi-hemispheric effects on corticospinal excitability induced by repeated sessions of imagery versus observation of actions. Restorative Neurology and Neuroscience, 2012, 30, 481-489.	0.4	13
132	Deep-level acoustic-to-articulatory mapping for DBN-HMM based phone recognition. , 2012, , .		13
133	Second Surgery in Insular Low-Grade Gliomas. BioMed Research International, 2015, 2015, 1-11.	0.9	13
134	Motor cortex compensates for lack of sensory and motor experience during auditory speech perception. Neuropsychologia, 2019, 128, 290-296.	0.7	13
135	Water-Based PEDOT:Nafion Dispersion for Organic Bioelectronics. ACS Applied Materials & Amp; Interfaces, 2020, 12, 29807-29817.	4.0	13
136	ACTION REPRESENTATION AND LANGUAGE IN THE BRAIN. Theoretical Linguistics, 1997, 23, .	0.1	12
137	The common language of speech perception and action: a neurocognitive perspective. Revue Francaise De Linguistique Appliquee, 2009, Vol. XIII, 9-22.	1.0	12
138	Interpersonal synchronization of movement intermittency. IScience, 2022, 25, 104096.	1.9	12
139	The Use of Phonetic Motor Invariants Can Improve Automatic Phoneme Discrimination. PLoS ONE, 2011, 6, e24055.	1.1	11
140	The Ontogenesis of Action Syntax. Collabra: Psychology, 2019, 5, .	0.9	11
141	Modeling speech imitation and ecological learning of auditory-motor maps. Frontiers in Psychology, 2013, 4, 364.	1.1	10
142	Neurons of rat motor cortex become active during both grasping execution and grasping observation. Current Biology, 2021, 31, 4405-4412.e4.	1.8	10
143	Computational Validation of the Motor Contribution to Speech Perception. Topics in Cognitive Science, 2014, 6, 461-475.	1.1	9
144	The neural oscillatory markers of phonetic convergence during verbal interaction. Human Brain Mapping, 2019, 40, 187-201.	1.9	9

#	Article	IF	CITATIONS
145	The Relationship Between FO Synchrony and Speech Convergence in Dyadic Interaction. , 0, , .		9
146	Dynamic brain-machine interface: A novel paradigm for bidirectional interaction between brains and dynamical systems. , 2011, 2011, 4592-5.		8
147	Ultra-flexible and brain-conformable micro-electrocorticography device with low impedance PEDOT-carbon nanotube coated microelectrodes. , 2013, , .		8
148	Rapid Identification of Cortical Motor Areas in Rodents by High-Frequency Automatic Cortical Stimulation and Novel Motor Threshold Algorithm. Frontiers in Neuroscience, 2017, 11, 580.	1.4	8
149	Achieving Ultra-Conformability With Polyimide-Based ECoG Arrays. , 2018, 2018, 4464-4467.		8
150	Spectral Power in Marmoset Frontal Motor Cortex during Natural Locomotor Behavior. Cerebral Cortex, 2021, 31, 1077-1089.	1.6	8
151	Relevance-weighted-reconstruction of articulatory features in deep-neural-network-based acoustic-to-articulatory mapping. , 0, , .		8
152	Brain Language Mechanisms Built on Action and Perception. , 2016, , 311-324.		7
153	Tool-use training temporarily enhances cognitive performance in long-tailed macaques (Macaca) Tj ETQq1 1 0	.784314 rgB 0.9	T /Qverlock 1
154	A minimal model of hospital patients' dynamics in COVID-19. Chaos, Solitons and Fractals, 2020, 140, 110157.	2.5	7
155	Motor overload: GABAergic index of parallel buffer costs. Brain Stimulation, 2021, 14, 1106-1108.	0.7	7
156	A Novel Biasing Scheme of Electrolyteâ€Gated Organic Transistors for Safe In Vivo Amplification of Electrophysiological Signals. Advanced Materials Interfaces, 2022, 9, .	1.9	7
157	The Change Matters! Measuring the Effect of Changing the Leader in Joint Music Performances. IEEE Transactions on Affective Computing, 2022, 13, 700-712.	5.7	6
158	Photovoltage generation in enzymatic bio-hybrid architectures. MRS Advances, 2020, 5, 985-990.	0.5	6
159	Beta Rebound as an Index of Temporal Integration of Somatosensory and Motor Signals. Frontiers in Systems Neuroscience, 2020, 14, 63.	1.2	6
160	Prediction of Speech Onset by Micro-Electrocorticography of the Human Brain. International Journal of Neural Systems, 2021, 31, 2150025.	3.2	6
161	Towards Automated Analysis of Joint Music Performance in the Orchestra. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2013, , 120-127.	0.2	6
162	Flexible Neural Interfaces Based on 3D PEDOT:PSS Micropillar Arrays. Advanced Materials Interfaces, 2022, 9, .	1.9	6

#	Article	IF	CITATIONS
163	Finger pressure adjustments to various object configurations during precision grip in humans and monkeys. European Journal of Neuroscience, 2017, 45, 1473-1484.	1.2	5
164	Accurate motor mapping in awake common marmosets using micro-electrocorticographical stimulation and stochastic threshold estimation. Journal of Neural Engineering, 2018, 15, 036019.	1.8	5
165	Implantable Organic Artificial Synapses Exhibiting Crossover between Depressive and Facilitative Plasticity Response. Advanced Electronic Materials, 0, , 2100755.	2.6	5
166	Nanostructured microsphere coated with living cells and tethered with low-stiffness wire: A possible solution to brain tissue reactions. , 2015, , .		4
167	Cross-Modal Audiovisual Modulation of Corticospinal Motor Synergies in Professional Piano Players: A TMS Study during Motor Imagery. Neural Plasticity, 2019, 2019, 1-11.	1.0	4
168	Role of sensorimotor areas in early detection of motor errors: An EEG and TMS study. Behavioural Brain Research, 2020, 378, 112248.	1.2	4
169	A Direct Comparison of Glassy Carbon and PEDOT-PSS Electrodes for High Charge Injection and Low Impedance Neural Interfaces. Advances in Science and Technology, 2016, 102, 68-76.	0.2	3
170	Improved long-term stability of thin-film glassy carbon electrodes through the use of silicon carbide and amorphous carbon. , 2017, , .		3
171	Can Crosstalk Compromise the Recording of High-Frequency Neural Signals?. , 2019, , .		3
172	A Compact and Autoclavable System for Acute Extracellular Neural Recording and Brain Pressure Monitoring for Humans. IEEE Transactions on Biomedical Circuits and Systems, 2015, 9, 50-59.	2.7	2
173	Interaction, Cooperation and Entrainment in Music: Experience and Perspectives. Lecture Notes in Morphogenesis, 2021, , 213-233.	0.2	2
174	Communication in Orchestra Playing as Measured with Granger Causality. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2012, , 273-275.	0.2	2
175	Electromyographic Activity of Hand Muscles in a Motor Coordination Game: Effect of Incentive Scheme and Its Relation with Social Capital. PLoS ONE, 2011, 6, e17372.	1.1	2
176	Analyzing Vocal Tract Movements During Speech Accommodation. , 0, , .		2
177	Developmental Coordination Disorder: State of the Art and Future Directions from a Neurophysiological Perspective. Children, 2022, 9, 945.	0.6	2
178	Fast Electrophysiological Mapping of Rat Cortical Motor Representation on a Time Scale of Minutes during Skin Stimulation. Neuroscience, 2019, 414, 245-254.	1.1	1
179	Developmental stuttering disappearance after iatrogenic lesion of the facial nerve. Journal of Neurosurgical Sciences, 2020, 64, 311-312.	0.3	1
180	Motor cognition: TMS studies of action generation. , 2012, , .		1

Motor cognition: TMS studies of action generation. , 2012, , . 180

#	Article	IF	CITATIONS
181	Robots can be perceived as goal-oriented agents. Contemporary Discourses of Hate and Radicalism Across Space and Genres, 0, , 13-32.	0.0	1
182	Relationship between cAMP concentration in anterior hypothalamic-preoptic region and the ultradian wake-sleep cycle. Journal of the Autonomic Nervous System, 1990, 30, S5-S7.	1.9	0
183	Flexible Bioelectronics: Flexible Bioelectronic Devices Based on Micropatterned Monolithic Carbon Fiber Mats (Adv. Mater. Technol. 2/2020). Advanced Materials Technologies, 2020, 5, 2070009.	3.0	0
184	Chapitre 11. Représentation des actions de la main et du langage dans l'aire de BrocaÂ: le rÃ1e des neurones miroirs. Neurosciences & Cognition Série LMD, 2009, , 191-200.	0.0	0
185	The First International Workshop on Multi-Scale Movement Technologies. , 2020, , .		0
186	Visual detection is locked to the internal dynamics of cortico-motor control. , 2020, 18, e3000898.		0
187	Visual detection is locked to the internal dynamics of cortico-motor control. , 2020, 18, e3000898.		0
188	Visual detection is locked to the internal dynamics of cortico-motor control. , 2020, 18, e3000898.		0
189	Visual detection is locked to the internal dynamics of cortico-motor control. , 2020, 18, e3000898.		0
190	Visual detection is locked to the internal dynamics of cortico-motor control. , 2020, 18, e3000898.		0
191	Visual detection is locked to the internal dynamics of cortico-motor control. , 2020, 18, e3000898.		0